Обонятельные рецепторы в организме человека расположены в

Обонятельные рецепторы находятся в верхней части носовой полости, под lamina perforata решетчатой кости.

Обонятельный эпителий находится в стороне от главного дыхательного пути. Вдыхаемый воздух может попадать туда путем диффузии, т. е. относительно медленно, или путем вихревых движений — более быстро. Такие вихревые движения получаются при «нюхании», т. е. при быстрых коротких вдохах через нос, при которых ноздри расширяются и облегчается проникновение вдыхаемого воздуха в верхнюю часть носовой полости — к обонятельным рецепторам.

Обонятельные рецепторы, или обонятельные клетки, представляют собой биполярные нейроны диаметром около 5—10 мк, расположенные вокруг цилиндрических опорных клеток. У собаки насчитывают 125 млн., а человека 60 млн. обонятельных клеток. Электронная микроскопия выявила на поверхности каждой обонятельной клетки большое количество тонких ресничек или выростов. Диаметр каждой такой реснички 0,1 мк, а высота 1—2 мк. Благодаря этим ресничкам резко возрастает возможность соприкосновения пахучего вещества с раздражаемой им рецепторной клеткой. Так, площадь обонятельной зоны у человека составляет окало 5 см2; суммарная же поверхность ресничек обонятельных клеток в 100—150 раз больше.


Чувствительность органов обоняния поразительно велика. Для иллюстрации приводим в таблице пороговые для человека концентрации в воздухе различных пахучих веществ.

Чувствительность животных с особенно развитым чувством обоняния, например собак, еще выше.

Название вещества

Пороговая концентрации вещества в воздухе (мг/м3)

Этил-меркаптан

0,00004

Йодоформ

0,06

Ванилин

0,0005

Хлорфенол

0,004

Скатол

0,0004

Тринитробутилтолуол

0.000005


Приведенные в таблице цифры недостаточно характеризуют чувствительность обонятельных клеток, так как их достигают только 2% молекул пахучего вещества, находящегося в воздухе, поступающем в нос. Согласно расчетам Стюйвера, для порогового раздражения одной обонятельной клетки человека достаточно 8 молекул меркаптана. Согласно другим расчетам, для получения ощущения запаха необходимо, чтобы было возбуждено не менее 40 рецепторных клеток, на каждую из которых действует всего одна молекула пахучего вещества.

Механизм,  посредством которого различные вещества раздражают обонятельные клетки, пока неясен. Высказывается предположение, что раздражение обонятельных клеток связано с химическим действием некоторых атомных групп. Однако химическим гипотезам противоречит тот факт, что некоторые близкие по структуре и химическим свойствам вещества могут иметь совершенно различные запахи.

Интенсивность обонятельного ощущения зависит от химической структуры и от концентрации пахучего вещества в воздухе и от скорости его тока через нос, а также от физиологического состояния обонятельного рецептора. Чем больше скорость поступления в нос воздуха с пахучим веществом, тем сильнее обонятельное ощущение.

Максимальная интенсивность обонятельного ощущения при одной той же концентрации пахучего вещества в воздухе наблюдается лишь первый момент его действия на обонятельные клетки.


дальнейшем ощущение запаха ослабевает. Последнее связано с тем, что быстро развивается адаптация рецепторов, вследствие которой понижается их чувствительность. Поэтому человек перестает ощущать запах, находясь некоторе время в помещении, в воздухе которого высока концентрация пахучего вещества. Адаптация обонятельного аппарата возникает быстрее, пахучее вещество действует непрерывно; адаптация возникает медленнее, если оно ритмически вдыхается и выдыхается, т. е. действует обонятельные рецепторы прерывисто.

Это обусловлено тем, что импульсы в обонятельном рецепторе возникают только в момент движения уха через нос в фазу вдоха. Обратное движение воздуха в фазу выдоха сопровождается появлением импульсации в обонятельных рецепторах потому, что при выдохе воздух движется через нос коротким путем я не заходит в обонятельную область. В том случае, когда воздух с пахучим веществом попадает в нос и не движется, если следующие вдохи производятся через рот, то импульсация в обонятельных клетках возникает только в первый   момент, а затем быстро прекращается вследствие адаптации. Последняя   развивается в течение нескольких секунд или минут.

Степень чувствительности обонятельных рецепторов и быстрота адаптации  регулируется симпатической нервной системой: раздражение симпатических нервных волокон резко увеличивает импульсацию в обонятельном нерве при действии запаха, что находится в соответствии с теорией Л. А. Орбели об адаптационной функции симпатической нервной системы.


Возможна быстрая адаптация к одному запаху, в то время как другие запахи продолжают восприниматься. Это обстоятельство легло в основу одной из существующих теорий обоняния. Предполагается, что вещества, вызывающие разные запахи, действуют на разные рецепторы. Так объясняется возможность адаптации к одному запаху при сохранении высокой чувствительности по отношению к другим пахучим веществам. Эта теория объясняет выпадение восприятия одних видов запахов сохранении чувствительности к другим (подобные явления, называемые частичной аносмией, наблюдаются при действии некоторых лекарственных веществ и при некоторых заболеваниях слизистой оболочки носа). Согласно излагаемой теории, имеется большое количество разных видов обонятельных рецепторов.

Другая теория предполагает, что существует сравнительно немного разных видов обонятельных рецепторов; все богатство обонятельных ощущений достигается тем, что пахучие вещества раздражают разные группы рецепторов в разных комбинациях.

Многочисленные попытки классифицировать запахи оказались мало удачы. Для примера приведем классификацию Хенинга, который различает следующие запахи: пряный, цветочный, фруктовый, смолистый, горелый и гнилостный. Цваардемакер различает 9 основных запахов; из них семь действуют только на окончания обонятельного нерва, а два также и на окончания n. trigeminus и n. Glossopharungeus.


Электрофизиологические исследования свидетельствуют о непрерывной импульсации в волокнах обонятельного тракта. Действие запахов изменяет характер этой импульсации (частоту и группировку импульсов в серии), и именно таким путем передается обонятельная информация.

Источник: www.amedgrup.ru

Рецепторы обонятельной системы расположены в области верхних носовых ходов. Обонятельный эпителий находится в стороне от главного дыхательного пути, имеет толщину 100-150 мкм и содержит рецепторные клетки диаметром 5-10 мкм, расположенные между опорными клетками. Число обонятельных рецепторов – около 10 млн. На поверхности каждой обонятельной клетки находится сферическое утолщение – обонятельная булава, из которой выступает по 6-12 тончайших (0,3 мкм) ресничек длиной до 10 мкм. Обонятельные реснички погружены в жидкую среду, вырабатываемую обонятельными (боуменовыми) железами. Наличие ресничек в десятки раз увеличивает площадь контакта рецептора с молекулами пахучих веществ.

Обонятельные клетки постоянно обновляются. Продолжительность жизни обонятельной клетки около 2 мес.

Молекулы пахучих веществ попадают в слизь, вырабатываемую обонятельными железами, с постоянным током воздуха или из ротовой полости во время еды. Принюхивание ускоряет приток пахучих веществ.

В слизи молекулы пахучих веществ на короткое время связываются с обонятельными нерецепторными белками. Молекулы, достигшие ресничек обонятельного рецептора, взаимодействуют с находящимся в них рецепторным белком. Запускается цепь биохимических реакций, приводящая к увеличению в цитоплазме концентрации цАМФ, что в свою очередь приводит к открыванию натриевых каналов в плазматической мембране рецепторной клетки и генерации деполяризационного рецепторного потенциала. Это приводит к импульсному разряду в аксоне рецептора (волокне обонятельного нерва).


Обонятельная рецепторная клетка – биполярная клетка, на апикальном полюсе которой находятся реснички, а от ее базальной части отходит немиелинизированный аксон. Аксоны рецепторов образуют обонятельный нерв, который пронизывает основание черепа и вступает в обонятельную луковицу.

Каждая рецепторная клетка способна ответить возбуждением на характерный для нее, хотя и широкий, спектр пахучих веществ. Эти спектры у разных клеток схожи, т.е. более 50% пахухих веществ оказываются общими для любых 2 обонятельных клеток.

Каждая отдельная обонятельная клетка имеет только один тип мембранного рецептора. Сам этот белок способен связывать множество пахучих веществ различной пространственной конфигурации.

Каждый обонятельный рецептор отвечает не на один, а на многие пахучие вещества, отдавая «предпочтение» некоторым из них.

Частота импульсации одиночного рецептора зависит как от интенсивности, так и от качества стимула.

В электрофизиологических исследованиях обонятельной луковицы выявлено, что регистрируемый в ней при действии запаха электрический ответ зависит от пахучего вещества: при разных запахах меняется пространственная мозаика возбужденных и заторможенных участков луковицы.


Центральные проекции обонятельной системы.

Ее афферентные волокна не переключаются в таламусе и не переходят на противоположную сторону большого мозга. Выходящий из луковицы обонятельный тракт состоит из нескольких пучков, направляющихся в разные отделы переднего мозга: переднее обонятельное ядро, обонятельный бугорок, препириформную кору, периамигдалярную кору и часть ядер миндалевидного комплекса. Связь обонятельной луковицы с гиппокампом и пириформной корой и другими отделами обонятельного мозга осуществляется через несколько переключений.

Показано, что наличие значительного числа центров обонятельного мозга не является необходимым для опознания запахов, а большинство нервных центров, в которые проецируется обонятельный тракт, можно рассматривать как ассоциативные центры, обеспечивающие связь обонятельной сенсорной системы с другими сенсорными системами и организацию сложных форм поведения – пищевой, оборонительной, половой и т.д.

Эфферентная регуляция активности обонятельной луковицы изучена недостаточно.

Чувствительность.

1обонятельный рецептор может быть возбужден 1 молекулой ПВ, а возбуждение небольшого числа рецепторов приводит к возникновению ощущения. Однако, изменение интенсивности действия веществ (порог различения) оценивается людьми довольно грубо – 30-60 % от исходной концентрации. У собак эта оценка в 3-6 раз точнее.


Адаптация происходит сравнительно медленно (десятки секунд и минуты) и зависит от скорости потока воздуха над обонятельным эпителием и концентрации пахучих веществ.

ВКУС

Как и обоняние, вкус основан на хеморецепции. Рецепторы вкуса – вкусовые почки (10000) – расположены на языке, задней стенке глотки, мягком небе, миндалинах и надгортаннике. Больше всего их на кончике, краях и задней части языка. Каждая вкусовая почка (ВП) человека состоит из нескольких (2-6) рецепторных клеток и из опорных клеток. ВП имеет колбовидную форму, длина и ширина около 70 мкм. Не достигает поверхности слизистой оболочки языка и соединени с полостью рта через вкусовую пору.

Вкусовые клетки – наиболее короткоживущие эпителиальные клетки организма. Через каждые 250 часов, старые клетки сменяются новыми клетками, движущимися к центру ВП от ее периферии. Рецепторная клетка длиной 10-20 мкм и шириной 3-4 мкм имеет на конце, обращенном в просвет поры, 30-40 тончайших микроворсинок толщиной 0,1- 0,2 мкм и длиной 1-2 мкм. Считают, что они играют важную роль в возбуждении рецепторной клетки, воспринимая те или иные химические вещества, адсорбированные в канале почки. Предполагают, что в области микроворсинок расположены активные центры – стереоспецифические участки рецептора, избирательно воспринимающие адсорбированные вещества.


Суммарный потенциал рецепторных клеток (измеряемый введением микроэлектрода) изменяется при раздражении языка разными веществами (сахар, соль, кислота). Этот потенциал развивается довольно медленно: максимум достигается к 10-15 с после воздействия, хотя электрическая активность в волокнах вкусового нерва значительно раньше.

Проводящие пути и центры вкуса.

Барабанная струна и языкоглоточный нерв. Их ядра в продолговатом мозге содержат первые нейроны вкусовой системы. Многие волокна, идущие от рецепторов, отличаются определенной специфичностью, т.к. отвечают учащением импульсных разрядов лишь на действие соли, кислоты, хинина. Другие реагируют на сахар.

Считается, что информация о 4 основных вкусовых ощущениях: горьком, сладком, кислом и соленом – кодируется не импульсацией в одиночных волокнах, а разным распределением частоты разрядов в большой группе волокон, по-разному возбуждаемых вкусовым веществом.

Вкусовые афферентные сигналы поступают в ядро одиночного пучка ствола мозга. От ядра одиночного пучка аксоны вторых нейронов восходят в составе медиальной петли до дугообразного ядра таламуса, где расположены третьи нейроны, аксоны которых направляются в корковый центр вкуса.

Вкусовые ощущения и восприятие.

Абсолютные пороги вкусовой чувствительности к разным веществам у разных людей существенно отличаются вплоть до «вкусовой слепоты» к отдельным агентам (например, к креатину). Абсолютные пороги во многом зависят от состояния организма (изменяются при голодании, беременности и т.д.). При измерении абсолютной вкусовой чувствительности возможны 2 ее оценки: возникновение неопределенного вкуса (отличного от дистиллированной воды) и осознанное определение вкуса.


Порог восприятия выше порога ощущения. Пороги различения минимальны в диапазоне средних концентраций веществ, но при переходе к большим концентрациям резко повышаются. 20% раствор сахара воспринимается как максимально сладкий, 10% раствор хлорида натрия – как максимально соленый, 0,2% раствор соляной кислоты – как максимально кислый, 0,1% раствор хинина сульфата – как максимально горький. Пороговый контраст (dI/I) для разных веществ значительно колеблется.

Адаптация.

При длительном действии вкусового вещества наблюдается адаптация (снижается интенсивность вкусового ощущения). Продолжительность адаптации пропорциональна концентрации раствора. Адаптация к сладкому и соленому развивается быстрее, чем к горькому и кислому. Обнаружена перекрестная адаптация, т.е. изменение чувствительности к одному веществу при действии другого. Применение нескольких вкусовых раздражителей одновременно или последовательно дает эффекты вкусового контраста или смещения вкуса. Например, адаптация к горькому повышает чувствительность к кислому и соленому. Адаптация к сладкому обостряет восприятие всех других вкусовых стимулов. При смешении нескольких вкусовых веществ может возникнуть новое вкусовое ощущение, отличающееся от вкуса составляющих его компонентов.

Источник: studopedia.ru

Обонятельные рецепторы (Обонятельные рецепторные клетки, нейросенсорные клетки, сенсорный нейрон)

Обонятельные рецепторные клетки (ОРК) (их около 40 млн) имеют центральные и периферические отростки. Короткий периферический отросток (дендрит) заканчивается утолщением (обонятельная булава), на вершине которой располагается по 10 — 12 подвижных обонятельных ресничек . Центральные отростки — аксоны — собираются в обонятельные нити (20 — 40), проходящие через решетчатую пластинку одноименной кости и направляющиеся в мозг.

На Рис. 13.4 показаны биполярные рецепторные клетки с одним неветвящимся дендритом, который проходит между опорными клетками, чтобы закончиться небольшим вздутием — обонятельной булавой . Из нее вырастают до 20 длинных ресничек. Эти обонятельные реснички представляют собой сенсорную поверхность обонятельной клетки. Обычно они погружены в слой слизи , покрывающей эпителий, образуя с ним плотный матрикс. Хотя обонятельная клетка имеет двойную функцию — детектирование стимула и передачу нервного импульса в мозг, а потому является нейросенсорной клеткой, ее иногда называют сенсорным нейроном.

Обонятельная рецепторная клетка (нейросенсорная клетка) — это биполярный нейрон ( рис. 37.4 ). Неподвижные реснички, расположенынные на его апикальной поверхности, реагируют на пахучие вещества, растворенные в покрывающем их слое слизи. От более глубоко расположенного края клетки отходит немиелинизированный аксон. Аксоны объединяются в обонятельные пучки (fila olfactoria) , проникающие в череп через отверстия в продырявленной пластинке (lamina cribrosa) решетчатой кости (os ethmoidale) . Волокна обонятельного нерва оканчиваются синапсами в обонятельной луковице , а центральные обонятельные структуры находятся в основании черепа сразу под лобной долей . Обонятельные рецепторные клетки входят в состав слизистой оболочки специализированной обонятельной зоны носоглотки , общая поверхность которой с двух сторон составляет примерно 10 кв. см ( рис. 37.5 ). У человека около десяти миллионов обонятельных рецепторов. Так же как вкусовые рецепторы , они живут недолго (около 60 дней) и непрерывно замещаются.

Молекулы пахучих веществ попадают к обонятельной зоне через ноздри при вдохе или из ротовой полости во время еды. Нюхательные движения усиливают поступление этих веществ, которые временно связываются с обонятельным связывающим белком слизи, секретируемой железами слизистой оболочки носовой полости.

Первичных обонятельных ощущений больше, чем вкусовых. Насчитываются запахи, по крайней мере, шести классов: цветочный, эфирный (фруктовый), мускусный, камфарный, гнилостный и едкий. Примерами их природных источников могут служить соответственно роза, груша, мускус, эвкалипт, тухлые яйца и уксус. В обонятельной слизистой оболочке находятся также рецепторы тройничного нерва .

Несколько молекул пахучего вещества вызывают в сенсорной клетке деполяризующий рецепторный потенциал, который запускает разряд импульсов в афферентном нервном волокне . Однако для поведенческой реакции необходима активация некоторого числа обонятельных рецепторов. Рецепторный потенциал, по-видимому, возникает в результате повышения проводимости для Na+. Вместе с тем, активируется G-белок ; следовательно, в обонятельном преобразовании (трансдукции) участвует каскад вторичных посредников.

Обонятельное кодирование имеет много общего со вкусовым. Каждый обонятельный хеморецептор отвечает на запахи более чем одного класса. Кодирование конкретного качества запаха обеспечивается ответами многих обонятельных рецепторов, а интенсивность ощущения определяется количественными характеристиками импульсной активности.

У мыши каждая из двух миллионов клеток в обонятельном эпителии экспрессирует только один из приблизительно 1500 генов рецепторов запаха (OR, odorant receptor), так что функциональная идентичность нейрона определяется природой рецептора, который он экспрессирует (это аналогично моноаллельной экспрессии генов иммуноглобулина или TCR в В- или T-клетках , см. " Эпигенетическое регулирование лимфоцитопоэза ").

При клиническом тестировании обоняния следует избегать их болевых или температурных раздражений.

Источник: medbiol.ru

В последнее десятилетие ХХ века в науке о запахах произошла подлинная революция. Решающую роль сыграло открытие 1000 видов обонятельных рецепторов, связывающих молекулы пахучих веществ. Однако механизм передачи обонятельного сигнала в центральную нервную систему таит в себе еще много загадок.

Чуть более четверти века назад в журнале «Наука и жизнь» (№ 1, 1978 г.) была опубликована статья «Загадка запаха». Ее автор, кандидат химических наук Г. Шульпин, справедливо отмечал, что современное ему состояние науки о запахах примерно такое же, как состояние органической химии в 1835 году. Тогда один из зачинателей этой науки, Ф. Велер, писал, что органическая химия представляется ему дремучим лесом, из которого невозможно выбраться. Но уже через четверть века А. М. Бутлеров, создав теорию химического строения вещества, сумел «выбраться из чащи». Шульпин выражал уверенность, что загадка запаха будет решена едва ли не быстрее, чем в случае органической химии.

И он оказался прав на все 100%! В последнее время произошел настоящий прорыв в понимании молекулярных основ обоняния. Разберем основные стадии восприятия запахов в свете современных представлений.

КАК ВОСПРИНИМАЕТСЯ ЗАПАХ

Проделаем простой опыт. Возьмем флакон с пахучей жидкостью, например духами, откроем пробку и понюхаем содержимое в спокойном ритме дыхания. Легко обнаружить, что мы ощущаем запах только во время вдоха; начинается выдох — запах исчезает.

При вдохе через нос воздух вместе с молекулами пахучего вещества (называемого обонятельным стимулом или одорантом) проходит в каждой из двух носовых полостей по щелевидному каналу сложной конфигурации, который образован продольной носовой перегородкой и тремя носовыми раковинами. Здесь воздух очищается от пыли, увлажняется и нагревается. Затем часть воздуха поступает в расположенную в верхней задней зоне канала обонятельную область, имеющую вид щели, покрытой обонятельным эпителием.

Общая поверхность, занимаемая эпителием в обеих половинках носа взрослого человека, невелика — 2 — 4 см2 (у кролика эта величина равна 7-10 см2, у собак — 27 — 200 см2). Эпителий покрыт слоем обонятельной слизи и содержит три типа первичных клеток: обонятельные рецепторы, опорные и базальные клетки. Влекомые воздухом пахучие молекулы проникают в носовую полость и переносятся над поверхностью эпителия. При нормальном спокойном дыхании вблизи обонятельного эпителия проходит 7 -10% вдыхаемого воздуха. Обонятельный эпителий имеет толщину приблизительно 150-300 мкм. Он покрыт слоем слизи (10-50 мкм), который молекулам одоранта предстоит преодолеть, прежде чем они провзаимодействуют со специальными сенсорными нейронами — обонятельными рецепторами.

Основная функция обонятельного рецептора состоит в выделении, кодировании и передаче информации об интенсивности, качестве и продолжительности запаха в обонятельную луковицу и специальным центрам в головном мозге. Эпителий в обеих носовых полостях у человека содержит приблизительно 10 млн обонятельных нейронов ( у кролика — около 100 млн, а у немецкой овчарки — до 225 млн).

Как известно, нейрон состоит из тела и отростков: аксонов и дендритов. Нервный импульс с одной нервной клетки на другую передается с аксона на дендрит. Диаметр утолщенной центральной части обонятельного нейрона (сомы) 5-10 мкм. Дендритная часть в виде волокнистых отростков диаметром 1-2 мкм выходит к внешней поверхности эпителия. Здесь дендриты заканчиваются утолщением, от которого отходит пучок из 6-12 ресничек (цилий) диаметром 0,2-0,3 мкм и длиной до 200 мкм, погруженный внутрь слоя слизи (у кролика число ресничек в одном рецепторном нейроне составляет 30-60, а у собак достигает 100-150). Отходящее от сомы нервное волокно (аксон) имеет диаметр около 0,2 мкм и выходит к внутренней поверхности эпителия. Здесь аксоны от соседних нейронов объединяются в жгуты (филы), доходящие до обонятельной луковицы.

СЕМИОТИКА ОБОНЯНИЯ

Для того чтобы обонятельный сигнал был воспринят нейроном, молекула одоранта связывается со специальной белковой структурой, расположен ной в нейрональной клеточной мембране. Такая структура называется рецепторным белком. Используя методы молекулярной биологии, американские ученые Линда Бак и Ричард Аксель в 1991 году установили, что обонятельные нейроны у млекопитающих содержат около 1000 различных видов рецепторных белков (у человека их меньше — около 350). Признанием важности этого открытия стало присуждение им в 2004 году Нобелевской премии за исследования в области физиологии и медицины (см. «Наука и жизнь» № 12, 2004 г).

Каким образом рецепторы распределяются по нейронам: имеются ли отдельные представители этого семейства во всех обонятельных нейронах или каждый нейрон несет на своей мембране только один вид рецепторного белка? Как может мозг определить, какой из 1000 типов рецепторов подал сигнал? Имеющиеся данные позволяют сделать заключение о том, что на одном нейроне присутствует только обонятельный рецепторный белок одного вида. Нейроны с разными рецепторами обладают различной функциональностью, то есть в эпителии имеются тысячи различных типов нейронов. В этом случае проблема идентификации активированного запахом отдельного рецептора сводится к задаче выявления подавшего сигнал нейрона.

Принимая во внимание, что общее число обонятельных нейронов у человека около 10 млн, число обонятельных рецепторов одного типа исчисляется в среднем десятками тысяч.

Обонятельная система использует комбинаторную схему для идентификации одорантов и кодирования сигнала. Согласно ей один тип обонятельных рецепторов активируется множеством одорантов и один одорант активирует множество типов рецепторов. Различные одоранты кодируются различными комбинациями обонятельных рецепторов, причем увеличение концентрации стимула приводит к возрастанию числа активируемых рецепторов и к усложнению его рецепторного кода. В этой схеме каждый рецептор выступает в качестве одного из компонентов комбинаторного рецепторного кода для многих одорантов и как бы выполняет роль буквы своеобразного алфавита, из совокупности которых составляются соответствующие слова-запахи.

Минимальные структурные отличия молекул одорантов, например, по функциональной группе, по длине углеродной цепи, по пространственной структуре приводят к различному рецепторному коду. Для отличительного признака молекулы одоранта, способного изменить кодировку запаха, был предложен термин «одотоп» (odotope), или детерминант запаха. Различные обонятельные рецепторы, которые распознают один и тот же одорант, могут идентифицировать различные его признаки-одотопы. Одиночный обонятельный рецептор способен «различать» молекулы, отличающиеся длиной углеродной цепочки всего лишь на один атом углерода, или молекулы, имеющие одинаковую длину углеродной цепочки, но отличающиеся функциональной группой. Учитывая, что в эпителии млекопитающих имеется приблизительно 1000 видов обонятельных рецепторов, можно полагать, что такая комбинаторная схема позволяет различить громадное число одорантов (даже человек различает до 10 000 запахов).

Полученные в последнее время результаты экспериментальных исследований свойств обонятельных рецепторных белков позволили создать на молекулярном уровне структурную модель спиральной молекулы обонятельного белка. Обонятельные рецепторные белки принадлежат к суперсемейству мембранносвязанных рецепторов. Они пересекают двухслойную липидную мембрану реснички семь раз. У содержащей 300-350 аминокислот молекулы рецепторного белка три наружные петли соединяются с тремя внутриклеточными петлями семью пересекающими мембрану трансмембранными участками.

НЕОБХОДИМАЯ СЛИЗЬ

Находящиеся в потоке воздуха молекулы одоранта, перед тем как достичь обонятельных рецепторных нейронов, должны пересечь обволакива ющий поверхность обонятельного эпителия слой слизи. Физиологические функции слоя слизи полностью до сих пор не выяснены. Не вызывает сомнения, что она создает гидрофильную оболочку для чувствительных и хрупких обонятельных рецепторов, выполняя защитную функцию. Ведь систему восприятия сигнала нужно защитить от воздействия внешней среды, то есть от молекул одорантов, среди которых могут быть достаточно опасные и химически активные вещества.

Слой слизи состоит из двух подслоев. Внешний, водный, имеет толщину примерно 5 мкм, а внутренний, более вязкий, — около 30 мкм. Реснички-цилии направлены наклонно к внешней поверхности слоя слизи. Они образуют своего рода сетку с нерегулярными ячейками, причем эта сетка размещена у поверхности раздела подслоев так, что основная часть поверхности ресничек (около 85%) оказывается расположен ной вблизи границы раздела.

Слой слизи содержит разнообразные растворимые в воде белки, значительную часть которых составляют так называемые гликопротеины. Благодаря разветвленной молекулярной структуре эти белки способны связывать и удерживать молекулы воды, образуя гель.

Другие виды белков, содержащихся в слизи, взаимодействуют с молекулами одорантов и тем самым могут оказывать влияние на восприятие и распознавание запахов. Эти белки подразделяются на два основных класса — одорант-связующие белки (OBP) и одорант-разрушающие ферменты.

ОВР относятся к семейству белков, имеющих складчатую бочкообразную структуру с внутренней глубокой полостью, в которую попадают маленькие молекулы гидрофильных (жирорастворимых) одорантов. Разные подвиды этих белков отличаются высокой избирательностью взаимодействия с одорантами различных химических классов.

Полагают, что OBP способствуют растворению одоранта и транспортируют его молекулы сквозь слой слизи, действуют как фильтр для разделения одорантов, могут облегчать связывание одоранта с рецепторным белком и даже очищать околорецепторное пространство от ненужных компонентов.

Кроме одорант-связующих белков в слизи обонятельного эпителия вблизи рецепторных нейронов обнаружены несколько видов одорант-разрушающих ферментов. Все эти ферменты запускают реакции превращения молекул одорантов в другие соединения. Образующиеся в результате этих реакций продукты также вносят свой вклад в восприятие запаха. В конечном итоге все поступающие в слой слизи молекулы одорантов быстро, практически одновременно с завершением вдоха, теряют свою «запаховую» активность. Так что обонятельная система при каждом вдохе получает новую информацию от свежих порций одоранта.

ОБОНЯНИЕ НА УРОВНЕ МОЛЕКУЛ

Многие свойства системы восприятия запахов можно объяснить на молекулярном уровне. Молекула одоранта встречает на поверхности слизи, покрывающей обонятельный эпителий, молекулу одорант-связующего белка, которая связывает и переносит молекулу одоранта через слой слизи к поверхности реснички обонятельного нейрона. В ресничках осуществляется основной процесс передачи обонятельного сигнала. Его механизм достаточно типичен для многих видов взаимодействий физиологически активных веществ с рецепторами нервных клеток.

Молекула одоранта прикрепляется к определенному обонятельному рецептору (R). Между процессом связывания молекулы одоранта с рецептором и передачей обонятельного сигнала в нервную систему лежит сложный каскад биохимических реакций, проходящих в нейроне. Связывание молекулы одоранта с рецепторным белком активирует так называемый G-белок, расположенный на внутренней стороне клеточной мембраны. G-белок в свою очередь активирует аденилатциклазу (AC) — фермент, преобразующий внутриклеточный аденозинтрифосфат (ATP) в циклический аденозинмонофосфат (cAMP). А уже cAMP активирует другой мембранносвязанный белок, который называется ионным каналом, поскольку открывает и закрывает вход заряженным частицам внутрь клетки. Когда ионный канал открыт, в клетку проникают катионы металлов. Таким способом меняется электрический потенциал клеточной мембраны и генерируется электрический импульс, передающий сигнал с одного нейрона на другой.

Несколько молекулярных стадий передачи внутриклеточного сигнала обеспечивают его усиление, в результате чего небольшого числа молекул одоранта становится достаточно для генерирования нейроном электрического импульса. Такие усилительные каскады обеспечивают большую чувствительность системы восприятия запахов.

Итак, активация рецепторного белка молекулой одоранта в конечном счете приводит к генерированию электрического тока в обонятельном рецепторном нейроне. Ток распространяется по дендриту нейрона в его соматическую часть, где возбуждает выходной электрический импульс. Этот импульс передается по нейрональному аксону в обонятельную луковицу.

Одиночный электрический сигнал-импульс на выходе имеет длительность не более 5 мс и пиковую амплитуду около 100 мкВ. Почти все нейроны генерируют импульсы и при отсутствии воздействия одоранта, то есть обладают спонтанной активностью, называемой биологическим шумом. Частота этих импульсов меняется в диапазоне от 0,07 до 1,8 импульса в секунду.

ЛУКОВИЧНАЯ НЕЙРОСЕТЬ

Обонятельные рецепторные нейроны распознают громадное число разнообразных молекул пахучих веществ и посылают информацию о них через аксоны в обонятельную луковицу, служащую первым центром обработки обонятельной информации в головном мозге. Парные обонятельные луковицы представляют собой продолговатые образования «на ножках». Отсюда начинается путь обонятельного сигнала к полушариям мозга. Аксоны обонятельных нейронов оканчиваются в обонятельной луковице разветвлениями в сферических концентраторах (диаметром 100-200 мкм), называемых гломерулами. В гломерулах осуществляется контакт между окончаниями аксонов обонятельных нейронов и дендритами нейронов второго порядка, которыми являются митральные и пучковые клетки.

Митральные клетки — самые крупные нервные клетки, выходящие из обонятельной луковицы. Пучковые клетки меньше митральных, но функционально с ними схожи. Представление о количестве нервных клеток у млекопитающих могут дать характеристики обонятельной системы кролика. В ней имеется по 50 миллионов обонятельных рецепторных нейронов справа и слева (ровно в десять раз больше, чем у человека). Аксоны обонятельных рецепторов распределены между 1900 гломерулами обонятельной луковицы — примерно по 26 000 аксонов на гломерулу. Дендритные окончания 45 000 митральных и 130 000 пучковых клеток получают сигналы от аксонов в гломерулах и передают их из обонятельной луковицы в центры обоняния в головном мозге. Около 24 митральных и 70 пучковых клеток получают информацию от аксонов в каждой гломеруле. У человека около 10 млн аксонов обонятельных нейронов распределяются по 2000 гломерул обонятельной луковицы.

Все аксоны одной популяции обонятельных нейронов сходятся на две гломерулы, зеркально расположенные по разные стороны двумерного поверхностного слоя обонятельной луковицы. В зависимости от содержания передаваемого сигнала гломерулы активируются различным образом. Совокупность активированных гломерул называется картой запаха и представляет своего рода «слепок» запаха, то есть она показывает, из каких пахучих веществ состоит воспринимаемый обонятельный объект.

Механизм активации гломерул до сих пор не выяснен. Усилия исследователей направлены на то, чтобы выяснить, каким образом многообразие одорантов воспроизводится в двумерном слое гломерул на поверхности обонятельной луковицы. Кстати, эти отображения имеют динамический характер — они постоянно меняются в ходе восприятия запаха, усложняя научную задачу.

Обонятельная луковица — это большая многослойная нейросеть для пространственно-временнoй обработки отображения запаха в гломерулах. Ее можно рассматривать как совокупность множества микросхем с большим количеством связей, со взаимной активацией и ингибированием активности нейронов. Выполняемые нейронами операции выделяют характерные свойства карты запаха.

От обонятельной луковицы аксоны митральных и пучковых клеток передают информацию в первичные обонятельные участки коры головного мозга, а затем в высшие ее участки, где формируется осознанное ощущение запаха, и в лимбическую систему, которая порождает эмоциональную и мотивационную реакцию на обонятельный сигнал.

Свойства обонятельных зон коры головного мозга позволяют формировать ассоциативную память, которая устанавливает связь нового аромата с отпечатками воспринятых ранее обонятельных стимулов. Полагают, что процесс идентификации одоранта включает сравнение получающегося отображения с его описанием в семантической памяти. В случае совпадения отпечатка и памяти о запахе происходит какой-либо ответ (эмоциональный, двигательный) организма. Процесс этот осуществляется очень быстро, в течение секунды, и информация о совпадении после ответа сразу сбрасывается, поскольку мозг готовит себя к решению следующей задачи восприятия запаха.

ЗАГАДКИ ЗАПАХОВ

То, о чем говорилось в предыдущих разделах, относится пусть к самому сложному, основополагающему, но начальному разделу науки о запахах — к их восприятию. Не раскрыт механизм взаимодействия обоняния с другими системами восприятия, например со вкусом (см. «Наука и жизнь» № 8, 2003 г., с. 16-20). Ведь известно, что если человеку зажать ноздри, то при дегустации даже хорошо известных вкусовых пищевых продуктов (например — кофе) он не в состоянии точно определить, что он пробовал. Достаточно разжать ноздри — и вкусовые ощущения восстанавливаются.

С молекулярной точки зрения пока непонятно, в каких единицах измерять интенсивность запаха и от чего она зависит, что такое качество запаха, его «букет», чем отличается один запах от другого и как охарактеризовать это отличие, что происходит с запахом при смешивании различных одорантов. Оказывается, что независимо от вида одорантов и уровня подготовленности даже опытный эксперт не может определить все составляющие смесь компоненты, если их больше трех. Если же смесь содержит более десяти одорантов, то человек не в состоянии идентифицировать ни одного из них.

Остается еще множество вопросов, касающихся механизмов и видов воздействия запахов на эмоциональное, психическое и физическое состояния человека. В последнее время на эту тему появилось немало спекуляций, чему поспособствовал вышедший в 1985 году роман П. Зюскинда «Парфюмер», более восьми лет прочно занимавший место в первой десятке бестселлеров на западном книжном рынке. Фантазии на тему чрезвычайной силы подсознательного воздействия ароматов на эмоциональное состояние человека обеспечили этому произведению огромный успех.

Однако художественный вымысел постепенно получает обоснование. Недавно в периодической печати появились сообщения о том, что американские военные «парфюмеры» разработали на редкость дурно пахнущую бомбу, способную не только вызвать отвращение, но и разогнать солдат противника или агрессивно настроенную толпу.

Общественные аллюзии на парфюмерные темы подстегнули всеобщий интерес к искусству ароматерапии. Расширилось использование ароматов в общественных местах, таких, как офисы, торговые залы, холлы гостиниц. Появились даже специальным образом ароматизированные товары, улучшающие настроение. Возникла такая отрасль рыночной экономики, как аромамаркетинг — «наука» о привлечении клиентов с помощью приятных запахов. Так, запах кожи навевает покупателю мысли о дорогом качественном товаре, аромат кофе побуждает к покупкам для домашнего ужина и т.д. Каким образом запахи формируют в головном мозге сигналы, побуждающие человека совершать покупки? Ученым предстоит совершить еще немало открытий, прежде чем ответить на этот и многие другие вопросы и отделить мифы о запахах от реальности.

Литература

Лозовская Е., канд. физ.-мат. наук. Штрих-код запаха // Наука и жизнь, 2004, № 12.

Майоров В. А. Запахи: их восприятие, воздействие, устранение. — М.: Мир, 2006.

Марголина А., канд. биол. наук. Сладкая власть феромонов // Наука и жизнь, 2005, № 7.

Шульпин Г., канд. хим. наук. Загадка запаха // Наука и жизнь, 1978, № 1.

Источник: www.nkj.ru

Что такое рецептор?

Данный термин, используемый в физиологии высшей нервной деятельности, начиная с исследований П. Эрлиха и П. Анохина, имеет несколько значений. Наиболее информативным является следующее: рецептор — это элемент нервной или эндокринной системы, способный присоединять и связывать биологические вещества-медиаторы, имеющие химическую или нейрогенную природу. Согласно теории нервных окончаний, это образование пространственно совпадает с молекулой пахучего или вкусового вещества, как ключ и замок. Это является сигналом для возникновения в обонятельных рецепторах, расположенных в периферическом отделе анализатора, процесса возбуждения. Оно передается далее в следующие части обонятельной воспринимающей системы, в которых и происходит анализ поступившей информации.

Строение нервной клетки

Нейроцит имеет не только тело, но и два вида отростков. Аксон – очень длинное окончание, которое служит для передачи уже возникших в коротких веточках (дендритах) нервных импульсов. Их комплекс с опорными клетками эпителиального происхождения и межклеточным веществом, глией, и будет иметь вид рецепторного образования. Принцип действия различных их видов, например, нервных окончаний, воспринимающих химические вещества, к которым относятся обонятельные рецепторы, сводится в конечном итоге к передаче возбуждения в корковый отдел головного мозга. Рассмотрим его далее.

Механизм рецепторной активности

Его можно представить в следующем виде: вначале происходит восприятие раздражений и изменение под их действием поляризации своей мембраны. Возможна также и модификация пространственной конфигурации сигнальных белков, расположенных на поверхности дендритов. Все это вызывает генерацию потенциалов действия и, как следствие, появление в нейроне нервных импульсов. Как выяснилось, обонятельные рецепторы способны улавливать мизерное количество молекул различных газообразных веществ, т. е. они имеют низкий порог чувствительности. Как же влияет восприятие этих соединений на состояние нашего организма?

Мир запахов

В произведении В. Пикуля «Душистая симфония жизни» бедный парфюмер безуспешно добивался руки и сердца главной героини. Чтобы досадить своему сопернику (известному певцу), он придумал следующее. Юноша принес на концерт большую корзину душистых фиалок и водрузил ее на крышку рояля. Артисту не удалось взять ни одной высокой ноты, и его премьера провалилась. Парфюмер, оказывается, точно знал, что обонятельные рецепторы человека, улавливающие запах фиалки, влияют на голосовые связки, нарушая их работу.

Действительно, обонятельный анализатор – один из наиболее чувствительных и недостаточно изученных видов сенсорных систем. Его деятельность тесно связана с восприятием вкуса и сильно влияет на эмоциональное и физическое состояние организма человека. На этом свойстве обоняния возникла такая отрасль медицины, как ароматерапия. Известно, что запахи лаванды и розмарина, которые воспринимают обонятельные рецепторы, успокаивают нервную систему и снимают стресс. Аромат лимона способствует концентрации внимания, а эвкалипт и жасмин повышают работоспособность.

Хеморецепторные сенсорные системы

Обонятельный анализатор трансформирует раздражения, вызванные частицами химических веществ, в ощущения запаха. Он помогает человеку улавливать в воздухе токсичные, опасные для здоровья соединения или определять непригодные к еде пищевые продукты. Это жизненно необходимо и является защитным приспособительным свойством организма. Так, едкий, раздражающий слизистые оболочки дыхательных путей и легких запах аммиака обонятельный рецептор воспринимает в дозе всего 70 молекул в 1 мл воды. Являясь хеморецептором, он передает возбуждение в обонятельный нерв. Оттуда нервные импульсы поступают в глубину височной доли коры головного мозга, где локализуется обонятельная зона. Отметим также, что ворсинки рецепторов, воспринимающих запахи, способны реагировать на минимальные концентрации химических веществ: от 2 до 8 молекул в 1 мл воздуха.

Нос как орган обоняния

В слизистой оболочке верхних и частично средних носовых ходов, на площади от 2,6 до 5 см2, располагаются нейроциты, группами по 8-10 клеток. Они связаны с опорными клеточными элементами и имеют волоски, содержащие внутри фибриллы. Обонятельные клетки содержат в цитоплазме большое количество молекул РНК. Это связано с высоким обменом веществ и активно протекающими реакциями биосинтеза белка. Отростки-дендриты непосредственно контактируют с молекулами пахучих газообразных веществ. Это обонятельные рецепторы. Химические соединения играют роль раздражителей, под действием которых мембраны нервных клеток деполяризуются. Этот процесс может замедляться из-за воспалительных реакций, возникающих вследствие респираторных или аллергических заболеваний верхних дыхательных путей. Эпителиальная оболочка носа набухает, секретируя избыточное количество слизи. Это приводит к снижению чувствительности нервных окончаний и ухудшению различения запахов, вплоть до полной потери обонятельных, а также вкусовых ощущений.

От чего зависит чувствительность рецепторов?

Обонятельные рецепторы находятся в слизистой оболочке верхних дыхательных путей, поэтому на возникновение определенных ощущений запаха влияет прежде всего концентрация пахучего вещества, находящегося во вдыхаемом воздухе. Так, густое масло, выжатое из лепестков розы, имеет малоприятный, трудно определяемый запах. Тонкий аромат роз появляется только при сильном разбавлении масляного концентрата.

Специалисты выделяют шесть базовых ощущений. К ним относятся запахи: смолистый, цветочный, пряный, гнилостный, фруктовый, горелый. По физиологическим характеристикам восприятия выявляют чистые, раздражающие и смешанные запахи. Чувствительность нервных окончаний к ним снижается, если человек является курильщиком или злоупотребляет алкоголем.

Научные теории возникновения обоняния

Среди ученых нет единого взгляда на сущность механизма восприятия запахов. Наиболее признанной можно считать стереохимическую теорию, согласно которой главная роль в определении химического раздражителя принадлежит нервным окончаниям нейронов. Обонятельные рецепторы – это своеобразные антенны, улавливающие молекулы запаха и изменяющие структуру собственных мембранных белков в соответствии с пространственной конфигурацией частиц химических соединений. Вследствие этого процесса мембрана нейрона поляризуется, и возникает нервный импульс, т. е. возникновение запаха имеет двойственную природу: химическую и нейрогенную.

Отметим также, что в объяснении возникновения запаха ученые применяют понятие обонятельного пигмента. Это вещество имеет такой же принцип действия, как родопсин и йодопсин – соединения, входящие в состав зрительных рецепторов сетчатки глаза: палочек и колбочек. Активные молекулы обонятельного пигмента содержат электроны в возбужденном состоянии, так как пахучие вещества вызывают и переход заряженных частиц на более высокие энергетические уровни. Возвращаясь на стационарные орбиты, электроны излучают квант энергии, обеспечивающий возникновение возбуждения в нервном окончании обонятельного нейрона.

Методы определения остроты обоняния

Некоторые профессии (например, парфюмера или дегустатора) требуют повышенной чувствительности органов обоняния и вкуса. Сильная чувствительность рецепторов обонятельного анализатора к запахам часто является врожденным свойством организма человека, однако она может развиться и после длительных тренировок. Существует тест, который проводят прибором – ольфактометром. Он определяет порог восприятия: минимальное количество вещества, способное вызвать соответствующее обонятельное ощущение.

Его используют в постановке диагноза аносмии, для вычисления предельно допустимых концентраций токсичных летучих веществ в выбросах промышленного производства. Необходимо применение ольфактометрии в работе санитарно-эпидемиологических лабораторий для установления причин возникновения массовых отравлений на предприятиях, в местах общественного питания, в школах.

Источник: FB.ru


Leave a Comment

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.