Дыхание простейших


Эволюция дыхательной системы

Всё живое на Земле существует за сёт солнечного тепла и энергии, достигающей поверхности нашей планеты. Все животные и человек приспособились добывать энергию из синтезированных растениями органических веществ. Чтобы использовать энергию Солнца, заключённую в молекулах органических веществ, её необходимо высвободить, окислив эти вещества. Чаще всего в качестве окислителя используют кислород воздуха, благо он составляет почти четверть объёма окружающей атмосферы.

Одноклеточные простейшие животные, кишечнополостные, свободноживущие плоские и круглые черви дышат всей поверхностью тела. Специальные органы дыхания — перистые жабры появляются у морских кольчатых червей и у водных членистоногих. Органами дыхания членистоногих являются трахеи, жабры, листовидные лёгкие расположенные в углублениях покрова тела. Система органов дыхания ланцетника представлена жаберными щелями, пронизывающими стенку переднего отдела кишечника — глотку. У рыб под жаберными крышками располагаются жабры, обильно пронизанными мельчайшими кровеносными сосудами. У наземных позвоночных органами дыхания являются лёгкие. Эволюция дыхания у позвоночных шла по пути увеличения площади легочных перегородок, участвующих в газообмене, совершенствования транспортных систем доставки кислорода к клеткам, расположенным внутри организма, и развития систем, обеспечивающих вентиляцию органов дыхания.


Строение и функции органов дыхания

Необходимым условием жизнедеятельности организма является постоянный газообмен между организмом и окружающей средой. Органы, по которым циркулируют вдыхаемый и выдыхаемый воздух, объединяются в дыхательный аппарат. Систему органов дыхания образуют носовая полость, глотка, гортань, трахея, бронхи и лёгкие. Большинство из них представляют собой воздухоносные пути и служат для проведения воздуха в лёгкие. В лёгких и происходят процессы газообмена. При дыхании организм получает из воздуха кислород, который разносится кровью по всему телу. Кислород участвует в сложных окислительных процессах органических веществ, при котором освобождается необходимая организму энергия. Конечные продукты распада — углекислота и частично вода — выводятся из организма в окружающую среду через органы дыхания.


Название отдела Особенности строения Функции
Воздухоносные пути
Полость носа и носоглотка Извилистые носовые ходы. Слизистая снабжена капиллярами, покрыта мерцательным эпителием и имеет много слизистых железок. Есть обонятельные рецепторы. В полости носа открываются воздухоносные пазухи костей.
  • Согревание или охлаждение вдыхаемого воздуха.
  • Задерживание и удаление пыли.
  • Уничтожение бактерий.
  • Обоняние.
  • Рефлекторное чихание.
  • Проведение воздуха в гортань.
Гортань Непарные и парные хрящи. Между щитовидным и черпаловидными хрящами натянуты голосовые связки, образующие голосовую щель. Надгортанник прикреплён к щитовидному хрящу. Полость гортани выстлана слизистой оболочкой, покрытой мерцательным эпителием.
  • Согревание или охлаждение вдыхаемого воздуха.
  • Надгортанник при глотании закрывает вход в гортань.
  • Участие в образовании звуков и речи, кашле при раздражении рецепторов от попадания пыли.
  • Проведение воздуха в трахею.
Трахея и бронхи Трубка 10–13 см с хрящевыми полукольцами. Задняя стенка эластичная, граничит с пищеводом. В нижней части трахея разветвляется на два главных бронха. Изнутри трахея и бронхи выстланы слизистой оболочкой. Обеспечивает свободное поступление воздуха в альвеолы лёгких.
Зона газообмена
Лёгкие Парный орган — правое и левое. Мелкие бронхи, бронхиолы, легочные пузырьки (альвеолы). Стенки альвеол образованы однослойным эпителием и оплетены густой сетью капилляров. Газообмен через альвеолярно-капилярную мембрану.
Плевра Снаружи каждое лёгкое покрыто двумя листками соединительнотканной оболочки: легочная плевра прилегает к лёгким, пристеночная — к грудной полости. Между двумя листками плевры — полость (щель), заполненная плевральная жидкостью.
  • За счёт отрицательного давления в полости осуществляется растягивание лёгких при вдохе.
  • Плевральная жидкость уменьшает трение при движении лёгких.

Функции дыхательной системы

  • Обеспечение клеток организма кислородом О2.
  • Удаление из организма углекислого газа СО2, а также некоторых конечных продуктов обмена веществ (паров воды, аммиака, сероводорода).

Носовая полость

Воздухоносные пути начинаются с носовой полости, которая через ноздри соединяется с окружающей средой. От ноздрей воздух проходит по носовым ходам, выстланным слизистым, реснитчатым и чувствительным эпителием. Наружный нос состоит из костных и хрящевых образований и имеет форму неправильной пирамиды, которая изменяется в зависимости от особенностей строения человека. В состав костного скелета наружного носа входят носовые косточки и носовая часть лобной кости.
ящевой скелет является продолжением костного скелета и состоит из гиалиновых хрящей различной формы. Полость носа имеет нижнюю, верхнюю и две боковые стенки. Нижняя стенка образована твёрдым нёбом, верхняя — решётчатой пластинкой решётчатой кости, боковая — верхней челюстью, слёзной костью, глазничной пластинкой решётчатой кости, нёбной костью и клиновидной костью. Носовой перегородкой полость носа разделена на правую и левую части. Перегородка носа образована сошником, перпендикулярной пластинкой решётчатой кости и спереди дополняется четырёхугольным хрящом носовой перегородки.

На боковых стенках полости носа располагаются носовые раковины — по три с каждой стороны, что увеличивает внутреннюю поверхность носа, с которой соприкасается вдыхаемый воздух.

Носовая полость образована двумя узкими и извилистыми носовыми ходами. Здесь воздух согревается, увлажняется и освобождается от частичек пыли и микробов. Оболочка, выстилающая носовые ходы, состоит из клеток, которые выделяют слизь, и клеток реснитчатого эпителия. Движением ресничек слизь вместе с пылью и микробами направляется из носовых ходов наружу.

Внутренняя поверхность носовых ходов богато снабжена кровеносными сосудами. Вдыхаемый воздух, попадает в полость носа, обогревается, увлажняется, очищается от пыли и частично обезвреживается. Из носовой полости он попадает в носоглотку. Затем воздух из носовой полости попадает в глотку, а из неё — в гортань.

Гортань


Гортань — один из отделов воздухоносных путей. Сюда из носовых ходов через глотку поступает воздух. В стенке гортани есть несколько хрящей: щитовидный, черпаловидный и др. В момент глотания пищи мышцы шеи поднимают гортань, а надгортанный хрящ опускается и закрывается гортань. Поэтому пища поступает только в пищевод и не попадает в трахею.

В узкой части гортани расположены голосовые связки, посредине между ними находится голосовая щель. При прохождении воздуха голосовые связки вибрируют, производя звук. Образование звука происходит на выдохе при управляемом человеком движении воздуха. В формировании речи участвуют: носовая полость, губы, язык, мягкое нёбо, мимические мышцы.

Трахея

Гортань переходит в трахею (дыхательное горло), которая имеет форму трубки длиной около 12 см, в стенках которого есть хрящевые полукольца, не позволяющие ей спадать. Задняя стенка её образована соединительнотканной перепонкой. Полость трахеи, как и полость других воздухоносных путей выстлана мерцательным эпителием, препятствующим проникновению в лёгкие пыли и других инородных тел. Трахея занимает серединное положение, сзади она прилежит к пищеводу, а по бокам от неё располагаются сосудисто-нервыне пучки. Спереди шейный отдел трахеи прикрывают мышцы, а вверху она охватывается ещё щитовидной железой. Грудной отдел трахеи прикрыт спереди рукояткой грудины, остатками вилочковой железы и сосудами. Изнутри трахея покрыта слизистой оболочкой, содержащей большое количество лимфоидной ткани и слизистых желёз. При дыхании мелкие частички пыли прилипают к увлажнённой слизистой оболочке трахеи, а реснички мерцательного эпителия продвигают их обратно к выходу из дыхательных путей.

Нижний конец трахеи делится на два бронха, которые затем многократно ветвятся, входят в правое и левое лёгкие, образуя в лёгких «бронхиальное дерево».

Бронхи


В грудной полости трахея делится на два бронха — левый и правый. Каждый бронх входит в лёгкое и там делится на бронхи меньшего диаметра, которые разветвляются на мельчайшие воздухоносные трубочки — бронхиолы. Бронхиолы в результате дальнейшего ветвления переходят в расширения — альвеолярные ходы, на стенках которых находятся микроскопические выпячивания, называемые легочными пузырьками, или альвеолами.

Стенки альвеол построены из особого тонкого однослойного эпителия и густо оплетены капиллярами. Общая толщина стенки альвеолы и стенки капилляра составляет 0,004 мм. Через эту тончайшую стенку происходит газообмен: в кровь из альвеолы поступает кислород, а обратно — углекислый газ. В лёгких насчитывается несколько сотен миллионов альвеол. Общая поверхность их у взрослого человека составляет 60–150 м2. благодаря этому в кровь поступает достаточное количество кислорода (до 500 литров в сутки).

Лёгкие

Лёгкие занимают почти всю полость грудной полости и представляют собой упругие губчатые органы.
центральной части лёгкого располагаются ворота, куда входят бронх, легочная артерия, нервы, а выходят легочные вены. Правое лёгкое делится бороздами на три доли, левое на две. Снаружи лёгкие покрыты тонкой соединительнотканной плёнкой — легочной плеврой, которая переходит на внутреннею поверхность стенки грудной полости и образует пристенную плевру. Между этими двумя плёнками находится плевральная щель, заполненная жидкостью, уменьшающей трение при дыхании.

На лёгком различают три поверхности: наружную, или рёберную, медиальную, обращённую в сторону другого лёгкого, и нижнюю, или диафрагмальную. Кроме того, в каждом лёгком различают два края: передний и нижний, отделяющие диафрагмальную и медиальную поверхности от рёберной. Сзади рёберная поверхность без резкой границы переходит в медиальную. Передний край левого лёгкого имеет сердечную вырезку. На медиальной поверхности лёгкого располагаются его ворота. В ворота каждого лёгкого входит главный бронх, легочная артерия, которая несёт в лёгкое венозную кровь, и нервы, иннервирующие лёгкое. Из ворот каждого лёгкого выходят две легочные вены, которые несут к сердцу артериальную кровь, и лимфатические сосуды.

Лёгкие имеют глубокие борозды, разделяющие их на доли — верхнюю, среднюю и нижнюю, а в левом две — верхнюю и нижнюю. Размеры лёгкого не одинаковы. Правое лёгкое несколько больше левого, при этом оно короче его и шире, что соответствует более высокому стоянию правого купола диафрагмы в связи с правосторонним расположением печени. Цвет нормальных лёгких в детском возрасте бледно-розовый, а у взрослых они приобретают тёмно-серую окраску с синеватым оттенком — следствие отложения в них попадающих с воздухом пылевых частиц. Ткань лёгкого мягкая, нежная и пористая.

Газообмен лёгких


В сложном процессе газообмена выделяют три основные фазы: внешнее дыхание, перенос газа кровью и внутреннее, или тканевое, дыхание. Внешнее дыхание объединяет все процессы, происходящие в лёгком. Оно осуществляется дыхательным аппаратом, к которому относятся грудная клетка с мышцами, приводящими её в движение, диафрагма и лёгкие с воздухоносными путями.

Воздух, поступивший в лёгкие при вдохе, изменяет свой состав. Воздух в лёгких отдаёт часть кислорода и обогащается углекислым газом. Содержание углекислого газа в венозной крови выше, чем в воздухе, находящемся в альвеолах. Поэтому углекислый газ выходит из крови в альвеолы и содержание его меньше, чем в воздухе. Сначала кислород растворяется в плазме крови, далее связывается с гемоглобином, а в плазму поступают новые порции кислорода.

Переход кислорода и углекислого газа из одной среды в другую проходит благодаря диффузии от большей концентрации к меньшей. Хотя диффузия протекает медленно, поверхность контакта крови с воздухом в лёгких настолько велика, что полностью обеспечивает нужный газообмен. Подсчитано, что полный газообмен между кровью и альвеолярным воздухом может происходить за время, которое втрое короче, чем время пребывания крови в капиллярах (т.е. в организме имеются значительные резервы обеспечения тканей кислородом).


Венозная кровь, попав в лёгкие, отдаёт углекислый газ, обогащается кислородом и превращается в артериальную. В большом круге эта кровь расходится по капиллярам во все ткани и отдаёт кислород клеткам тела, которые постоянно потребляют его. Углекислого газа, выделяющегося клетками в результате их жизнедеятельности, здесь больше, чем в крови, и он диффундирует из тканей в кровь. Таким образом, артериальная кровь, пройдя через капилляры большого круга кровообращения, становится венозной и правой половиной сердца направляется в лёгкие, здесь опять насыщается кислородом и отдаёт углекислый газ.

В организме дыхание осуществляется с помощью дополнительных механизмов. Жидкие среды, входящие в состав крови (её плазмы), обладают низкой растворимостью в них газов. Поэтому, для того чтобы человек мог существовать, ему нужно было бы иметь сердце мощнее в 25 раз, лёгкие — в 20 раз и за одну минуту перекачивать более 100 литров жидкости (а не пять литров крови). Природа нашла способ преодоления этой трудности, приспособив для переноса кислорода особое вещество — гемоглобин. Благодаря гемоглобину кровь способна связывать кислород в 70 раз, а углекислый газ — в 20 раз больше, чем жидкая часть крови — её плазма.

Альвеола — тонкостенный пузырёк диаметром 0,2 мм, заполненный воздухом. Стенка альвеолы образована одним слоем плоских клеток эпителия, по наружной поверхности которых разветвляется сетка капилляров. Таким образом, газообмен происходит через очень тонкую перегородку, образованную двумя слоями клеток: стенки капилляра и стенки альвеолы.

Обмен газов в тканях (тканевое дыхание)


Обмен газов в тканях осуществляется в капиллярах по тому же принципу, что и в лёгких. Кислород из тканевых капилляров, где его концентрация высока, переходит в тканевую жидкость с более низкой концентрацией кислорода. Из тканевой жидкости он проникает в клетки и сразу же вступает в реакции окисления, поэтому в клетках практически нет свободного кислорода.

Диоксид углерода по тем же законам поступает из клеток, через тканевую жидкость, в капилляры. Выделяющийся углекислый газ способствует диссоциации оксигемоглобина и сам вступает в соединение с гемоглобином, образуя карбоксигемоглобин, транспортируется в лёгкие и выделяется в атмосферу. В оттекающей от органов венозной крови углекислый газ находится как в связанном, так и в растворённом состоянии в виде угольной кислоты, которая в капиллярах лёгких легко распадается на воду и углекислый газ. Угольная кислота может также вступать в соединения с солями плазмы, образуя бикарбонаты.

В лёгких, куда поступает венозная кровь, кислород снова насыщает кровь, а углекислый газ из зоны высокой концентрации (легочных капилляров) переходит в зону низкой концентрации (альвеол). Для нормального газообмена воздух в лёгких постоянно сменяться, что достигается ритмическими атаками вдоха и выдоха, за счёт движений межрёберных мышц и диафрагмы.

Транспорт кислорода в организме

Путь кислорода Функции
Верхние дыхательные пути
Носовая полость Увлажнение, согревание, обеззараживание воздуха, удаление частиц пыли
Глотка Проведение согретого и очищенного воздуха в гортань
Гортань Проведение воздуха из глотки в трахею. Защита дыхательных путей от попадания пищи надгортанным хрящом. Образование звуков путём колебания голосовых связок, движения языка, губ, челюсти
Трахея Свободное продвижение воздуха
Бронхи Свободное продвижение воздуха
Лёгкие Органы дыхания. Дыхательные движения осуществляются под контролем центральной нервной системы и гуморального фактора, содержащегося в крови, — СО2
Альвеолы Увеличивают площадь дыхательной поверхности, осуществляют газообмен между кровью и лёгкими
Кровеносная система
Капилляры лёгких Транспортируют венозную кровь из легочной артерии в лёгкие. По законам диффузии О2 поступает из мест большей концентрации (альвеолы) в места меньшей концентрации (капилляры), в то же время СО2 диффундирует в противоположном направлении.
Легочная вена Транспортирует О2 от лёгких к сердцу. Кислород, попав в кровь, сначала растворяется в плазме, затем соединяется с гемоглобином, и кровь становится артериальной
Сердце Проталкивает артериальную кровь по большому кругу кровообращения
Артерии Обогащают кислородом все органы и ткани. Легочные артерии несут венозную кровь к лёгким
Капилляры тела Осуществляют газообмен между кровью и тканевой жидкостью. О2 переходит в тканевую жидкость, а СО2 диффундирует в кровь. Кровь становится венозной
Клетка
Митохондрии Клеточное дыхание — усвоение О2 воздуха. Органические вещества благодаря О2 и дыхательным ферментам окисляются (диссимиляция) конечные продукты — Н2О, СО2 и энергия которая идёт на синтез АТФ. Н2О и СО2 выделяются в тканевую жидкость, из которой диффундируют в кровь.

Значение дыхания.

Дыхание — это совокупность физиологических процессов, обеспечивающих газообмен между организмом и внешней средой (внешнее дыхание), и окислительных процессов в клетках, в результате которых выделяется энергия (внутреннее дыхание). Обмен газов между кровью и атмосферным воздухом (газообмен) — осуществляется органами дыхания.

Источником энергии в организме служат пищевые вещества. Основным процессом, освобождающим энергию этих веществ, является процесс окисления. Он сопровождается связыванием кислорода и образованием углекислого газа. Учитывая, что в организме человека нет запасов кислорода, непрерывное поступление его жизненно необходимо. Прекращение доступа кислорода в клетки организма ведёт к их гибели. С другой стороны, образованный в процессе окисления веществ углекислый газ должен быть удалён из организма, так как накопление значительного количества его опасно для жизни. Поглощение кислорода из воздуха и выделение углекислого газа осуществляется через систему органов дыхания.

Биологическое значение дыхания заключается в:

  • обеспечении организма кислородом;
  • удалении углекислого газа из организма;
  • окислении органических соединений БЖУ с выделением энергии, необходимой человеку для жизнедеятельности;
  • удалении конечных продуктов обмена веществ (пары воды, аммиака, сероводорода и т.д.).

Источник: biouroki.ru

Введение

Дыхательная система – это совокупность органов, целью которой является обеспечение организма человека кислородом. Процесс обеспечения кислородом имеет название – газообмен. Вдыхаемый человеком кислород, на выдохе превращается в углекислый газ. Газообмен происходит в легких, а именно в альвеолах. Их вентилирование реализуется чередованием циклов вдоха (инспирация) и выдоха (экспирация). Процесс вдоха взаимосвязан с двигательной активностью диафрагмы и внешних межреберных мышц. На вдохе диафрагма опускается, а ребра поднимаются. Процесс выдоха происходит по большей части пассивно, вовлекая только внутренние межреберные мышцы. На выдохе диафрагма поднимается, ребра опускаются.

Дыхание обычно разделяют по способу расширения грудной клетки на два типа: грудное и брюшное. Первое чаще наблюдается у женщин (расширение грудины происходит за счет поднятия ребер). Второе чаще наблюдается у мужчин (расширение грудины происходит за счет деформации диафрагмы).

Строение дыхательной системы

Дыхательные пути разделяют на верхние и нижние. Такое разделение является чисто символическим и граница между верхними и нижними путями дыхания проходит в месте пересечения дыхательной и пищеварительной систем в верхней части гортани. К верхним дыхательным путям относят полость носа, носоглотку и ротоглотку с ротовой полостью, но только частично, так как последняя в процессе дыхания не задействована. К нижним дыхательным путям относят гортань (хотя иногда ее относят и к верхним путям), трахею, бронхи и легкие. Воздушные пути внутри легких представляют своего рода дерево и разветвляются примерно 23 раза, прежде чем кислород попадет в альвеолы, в которых и происходит газообмен. Схематическое изображение системы дыхания человека вы можете увидеть на рисунке ниже.

строение дыхательной системы человека

Строение дыхательной системы человека: 1- Лобная пазуха; 2- Клиновидная пазуха; 3- Носовая полость; 4- Преддверие носа; 5- Ротовая полость; 6- Глотка; 7- Надгортанник; 8- Голосовая складка; 9- Щитовидный хрящ; 10- Перстеневидный хрящ; 11- Трахея; 12- Верхушка легкого; 13- Верхняя доля (долевые бронхи: 13.1- Правый верхний; 13.2- Правый средний; 13.3- Правый нижний); 14- Горизонтальная щель; 15- Косая щель; 16- Средняя доля; 17- Нижняя доля; 18- Диафрагма; 19- Верхняя доля; 20- Язычковый бронх; 21- Киль трахеи; 22- Промежуточный бронх; 23- Левый и правый главные бронхи (долевые бронхи: 23.1- Левый верхний; 23.2- Левый нижний); 24- Косая щель; 25- Сердечная вырезка; 26- Язычок левого легкого; 27- Нижняя доля.

Дыхательные пути выступают в роли связующего звена между окружающей средой и основным органом дыхательной системы – легкими. Они располагаются внутри грудной клетки и окружены ребрами и межреберными мышцами. Непосредственно в легких и происходит процесс газообмена между кислородом, поступившим к легочным альвеолам (см. рисунок ниже) и кровью, которая циркулирует внутри легочных капилляров. Последние осуществляют доставку кислорода в организм и выведение из него газообразных продуктов обмена. Соотношение кислорода и углекислого газа в легких поддерживается на относительно постоянном уровне. Прекращение поступления кислорода в организм приводит к потере сознания (клиническая смерть), затем к необратимым нарушениям работы мозга и в конечном счете к гибели (биологическая смерть).

строение альвеол легких дыхательной системы

Строение альвеолы: 1- Капиллярное русло; 2- Соединительная ткань; 3- Альвеолярные мешочки; 4- Альвеолярный ход; 5- Слизистая железа; 6- Слизистая выстилка; 7- Легочная артерия; 8- Легочная вена; 9- Отверстие бронхиолы; 10- Альвеола.

Процесс дыхания, как я уже говорил выше, осуществляется за счет деформации грудной клетки при помощи дыхательных мышц. Само по себе дыхание – это один из немногих процессов, протекающих в организме, который контролируется им как осознанно, так и бессознательно. Вот почему человек во время сна, находясь в бессознательном состоянии продолжает дышать.

Функции дыхательной системы

Основные две функции, которые выполняет дыхательная система человека – это непосредственно само дыхание и газообмен. Помимо прочего, она участвует в таких не менее важных функциях, как поддержание теплового баланса тела, формирование тембра голоса, восприятие запахов, а также повышение влажности вдыхаемого воздуха. Легочная ткань принимает участие в производстве гормонов, водно-солевом и липидном обмене. В обширной системе сосудов легких происходит депонирование (хранение) крови. Также дыхательная система защищает организм от механических факторов внешней среды. Впрочем, из всего этого многообразия функций нас будет интересовать именно газообмен, так как без него не протекает ни обмен веществ, ни образование энергии, ни как следствие, сама жизнь.

В процессе дыхания кислород через альвеолы проникает кровь, а углекислый газ через них же выводится из организма. Данный процесс предполагает проникновение кислорода и углекислого газа сквозь капиллярную мембрану альвеол. В состоянии покоя давление кислорода в альвеолах приблизительно на 60 мм рт. ст. выше по сравнению с давлением в кровеносных капиллярах легких. За счет этого кислород проникает в кровь, которая течет по легочным капиллярам. Таким же образом углекислый газ проникает в обратном направлении. Процесс газообмена протекает настолько быстро, что его можно назвать фактически мгновенным. Схематически этот процесс изображен на рисунке ниже.

протекание процесса газообмена в легких

Схема протекания процесса газообмена в альвеолах: 1- Капиллярная сеть; 2- Альвеолярные мешочки; 3- Отверстие бронхиолы. I- Поступление кислорода; II- Выведение углекислого газа.

С газообменом разобрались, теперь поговорим об основных понятиях относительно дыхания. Объем воздуха, вдыхаемый и выдыхаемый человеком за одну минуту, называется минутным объемом дыхания. Он обеспечивает необходимый уровень концентрации газов в альвеолах. Показатель концентрации определяется дыхательным объемом – это количество воздуха, которое человек вдыхает и выдыхает в процессе дыхания. А также частотой дыхательных движений, иными словами – частотой дыхания. Резервный объем вдоха – это максимальный объем воздуха, который человек может вдохнуть после обычного вдоха. Следовательно, резервный объем выдоха – это максимальное количество воздуха, которое человек может выдохнуть дополнительно, после обычного выдоха. Максимальный объем воздуха, который человек способен выдохнуть после максимального вдоха, называется жизненной емкостью легких. Тем не менее, даже после максимального выдоха в легких остается определенное количество воздуха, которое называется остаточным объемом легких. Сумма жизненной емкости легких и остаточного объема легких дает нам общую емкость легких, которая у взрослого человека равняется 3-4 литрам воздуха на 1 легкое.

Момент вдоха приносит кислород в альвеолы. Помимо альвеол, воздух также заполняет все остальные участки дыхательных путей – ротовую полость, носоглотку, трахею, бронхи и бронхиолы. Поскольку в процессе газообмена эти отделы дыхательной системы не участвуют, они получили название анатомически мертвого пространства. Объем воздуха, который заполняет это пространство, у здорового человека, как правило составляет порядка 150 мл. С возрастом, этот показатель имеет тенденцию увеличиваться. Поскольку в момент глубокого вдоха дыхательные пути имеют свойство расширяться, нужно иметь в виду, что увеличение дыхательного объема сопровождается одновременно и увеличением анатомического мертвого пространства. Такое относительное увеличение дыхательного объема обычно превышает данный показатель для мертвого анатомического пространства. В итоге, при увеличении дыхательного объема, доля анатомического мертвого пространства понижается. Таким образом, мы можем сделать вывод, что увеличение дыхательного объема (при глубоком дыхании) обеспечивает значительно более качественную вентиляцию легких, сравнительно с учащенным дыханием.

Регуляция дыхания

Для полноценного обеспечения организма кислородом, нервная система регулирует скорость вентиляции легких через изменение частоты и глубины дыхания. За счет этого концентрация кислорода и углекислого газа в артериальной крови не меняется даже под воздействием таких активных физических нагрузок, как работа на кардиотренажере или тренировка с отягощениями. Регуляция дыхания контролируется дыхательным центром, который приведен на рисунке ниже.

как устроен дыхательный центр ствола мозга

Строение дыхательного центра ствола мозга: 1- Варолиев мост; 2- Пневмотаксический центр; 3- Апнейстический центр; 4- Предкомплекс Бетцингера; 5- Дорсальная группа дыхательных нейронов; 6- Вентральная группа дыхательных нейронов; 7- Продолговатый мозг. I- Дыхательный центр ствола мозга; II- Части дыхательного центра моста; III- Части дыхательного центра продолговатого мозга.

Дыхательный центр состоит из нескольких разрозненных групп нейронов, которые расположены с обеих сторон нижней части ствола мозга. Всего выделяют три основных группы нейронов: дорсальная группа, вентральная группа и пневмотаксический центр. Рассмотрим их более подробно.

  • Дорсальная дыхательная группа играет важнейшую роль в реализации процесса дыхания. Она также является и главным генератором импульсов, которые задают постоянный ритм дыхания.
  • Вентральная дыхательная группа выполняет сразу несколько важных функций. В первую очередь, дыхательные импульсы от данных нейронов принимают участие в регуляции процесса дыхания, контролируя уровень легочной вентиляции. Помимо прочего, возбуждение избранных нейронов вентральной группы может стимулировать вдох или выдох, в зависимости от момента возбуждения. Важность этих нейронов особенно велика, так как они способны управлять мышцами живота, принимающими участие в цикле выдоха при глубоком дыхании.
  • Пневмотаксический центр принимает участие в управлении частотой и амплитудой дыхательных движений. Главное влияние данного центра состоит в регуляции длительности цикла наполнения легких, как фактора, который ограничивает дыхательный объем. Добавочным эффектом такой регуляции является непосредственное воздействие на частоту дыхания. При уменьшении длительности цикла вдоха, цикл выдоха также сокращается, что в итоге приводит к увеличению частоты дыхания. То же справедливо и в обратном случае. При увеличении длительности цикла вдоха, цикл выдоха также увеличивается, при этом частота дыхания снижается.

Заключение

Дыхательная система человека – это в первую очередь набор органов, необходимый для обеспечения организма жизненно необходимым кислородом. Знание анатомии и физиологии данной системы дает вам возможность понять базовые основы построения тренировочного процесса как аэробной, так и анаэробной направленности. Приведенная здесь информация имеет особое значение при определении целей тренировочного процесса и может служить основой для оценки состояния здоровья атлета при плановом построении тренировочных программ.

Источник: fit-baza.com

Подавляющее большинство животных нуждается в кислороде, так как образование энергии, необходимой для их жизнедеятельности, происходит за счет окислительных процессов, сопровождающихся выделением углекислого газа (см. Биологическое окисление, Дыхание). Поступление кислорода в организм и удаление из него углекислого газа осуществляется благодаря процессам дыхания.

Наиболее простая форма дыхания у одноклеточных животных — путем диффузии газов через поверхность клетки.

У многоклеточных животных формируются разные типы дыхательных систем. Так, у губок и червей появляется кожное дыхание. Кислород и углекислый газ хорошо растворяются в воде и легко проходят через влажную поверхность тела в сторону меньшей концентрации газов.

Развитие хитинового покрова у насекомых исключило кожное дыхание и вызвало образование трахейной дыхательной системы (рис. 1). Это система тончайших трубочек, которые доходят до всех клеток и тканей. По трубочкам кислород из внешней среды проникает к тканям, а обратно выходит углекислый газ. У большинства водных животных появилось жаберное дыхание. Жабры имеют большую поверхность и могут в достаточной мере поглощать растворенный в воде в относительно небольшом количестве кислород (5—7 мл О2 в 1 л воды). В 1 л воздуха содержится 210 мл кислорода. Потому у большинства наземных позвоночных, начиная с земноводных, основным типом дыхания становится легочное, хотя у земноводных еще 50% необходимого кислорода поглощается кожей.

У птиц есть еще и воздушные мешки — выросты легких, располагающиеся между внутренними органами и в полых костях. Газообмен у птиц происходит при вдохе и при выдохе, когда воздух проходит через легкие в воздушные мешки и обратно.

Наибольшего совершенства достигло дыхание млекопитающих за счет большого увеличения дыхательной поверхности легких. У человека она 90—100 м2.

Дыхательные пути человека состоят из носовой и ротовой полости, носоглотки, гортани, трахеи, бронхов. В носовой полости вдыхаемый воздух согревается, увлажняется и очищается. Это предохраняет от заболеваний дыхательные пути и легкие.

Легкие состоят из легочных мешков, которые образованы бронхиолами, заканчивающимися слепыми мешочками — альвеолами. Каждая альвеола оплетена густой сетью кровеносных капилляров. Через стенки альвеол и капилляров происходит газообмен. Каждое легкое покрыто оболочкой плевры, состоящей из двух листков. Она образует замкнутую ще-леобразную плевральную полость, так как внутренний листок покрывает легкое и, не прерываясь, переходит в наружный листок, который внутри выстилает грудную клетку. Внутри полости находится небольшое количество жидкости, которая облегчает скольжение листков относительно друг друга. Давление внутри плевральной полости всегда отрицательное, т. е. ниже атмосферного.

Изменение объема грудной клетки при вдохе происходит за счет сокращения дыхательных межреберных мышц и диафрагмы. Это в свою очередь ведет к тому, что наружный листок плевры несколько отходит от внутреннего. Плевральная полость несколько увеличивается, давление в ней падает, что растягивает эластичную легочную ткань. Увеличение объема легких приводит к понижению в них давления, и наружный воздух засасывается в легкие. Так происходит вдох. В покое выдох происходит пассивно. Ребра под действием силы тяжести опускаются, диафрагма давлением внутренних органов поднимается, и объем грудной клетки уменьшается. Плевральная полость и легкие несколько сдавливаются, и легочный воздух выходит наружу. Усиленный выдох происходит за счет сокращения выдыхательной мускулатуры.

Максимальный объем выдоха после максимального вдоха (жизненная емкость легких) у мужчин в норме 4,8 л, у женщин — 3,3 л. У спортсменов-бегунов высокой квалификации он равен 8,0 л.

Эффективность легочного газообмена зависит от интенсивности дыхательных движений и состава вдыхаемого воздуха. Гребля, плавание, бег, физические упражнения на свежем воздухе способствуют легочной вентиляции.

Легочный газообмен происходит через тончайшие стенки альвеолярных пузырьков диффузно, за счет разницы парциального давления кислорода и углекислого газа в альвеолярном воздухе и их напряжения в крови.

Парциальное, или частичное, давление газа в газовой смеси пропорционально процентному содержанию газа и общему давлению. Процентное содержание кислорода в атмосферном воздухе примерно 21%. При давлении воздуха 760 мм рт. ст. парциальное давление кислорода составляет (760•21)/100≈159 мм рт. ст.

Альвеолярный воздух насыщен водяными парами, кислорода в нем 14%, поэтому парциальное давление кислорода в альвеолярном воздухе равно ≈100—110 мм рт. ст.

В крови газы находятся в растворенном и химически связанном состоянии. В диффузии участвуют только молекулы растворенного га-зй. Напряжением газа в жидкости называют силу, с которой молекулы растворенного газа стремятся выйти в газовую среду. Эта сила зависит от процентного содержания газа в крови. Установлено, что напряжение кислорода в венозной крови — 40 мм рт. ст. Диффузионное давление (100—40=60 мм рт. ст.) способствует быстрому переходу кислорода в кровь, где он растворяется и соединяется с гемоглобином, образуя оксигемоглобин. В таком виде кислород доставляется к тканям.

Максимальное напряжение углекислого газа в тканях 60, в венозной крови 47 мм рт. ст., парциальное давление в альвеолярном воздухе 40 мм рт. ст. В венозной крови часть углекислого газа транспортируется в виде соединения с гемоглобином и солей угольной кислоты.

В легочных капиллярах с помощью фермента углекислый газ быстро отщепляется от химических соединений и за счет диффузионного давления (47—40=7 мм рт. ст.) уходит в альвеолярный, а затем при выдохе — в атмосферный воздух.

За время протекания крови через легкие напряжение газов в ней практически почти сравнивается с их парциальным давлением в легких. Аналогичная диффузия газов происходит в тканевых капиллярах только в обратном направлении: кислород поступает в ткани, а углекислый газ в кровь.

Небольшое количество газов всегда растворено в плазме крови (О2, СО2, N2), в условиях нормального атмосферного давления эти растворимые газы не оказывают влияния на дыхание. Но при восхождении в горы, погружении в воду, в космических полетах необходимо учитывать влияние газов, растворимых в плазме крови. Например, при работе водолазов в условиях повышенного барометрического давления растворимый азот может оказывать наркотическое действие. Это важно учитывать и аквалангистам. Подъем с больших глубин производят медленно, с остановками, чтобы растворимые газы постепенно удалялись из крови и в кровеносных сосудах не образовывались воздушные пузырьки, которые при быстром подъеме могут нарушить кровообращение.

Регуляция дыхательных движений осуществляется дыхательным центром, который представлен совокупностью нервных клеток, расположенных в разных отделах центральной нервной системы. Основная часть дыхательного центра расположена в продолговатом мозге. Активность его зависит от концентрации углекислого газа (СО2) в крови и от нервных импульсов, приходящих от рецепторов разных внутренних органов и кожи.

Так, у новорожденного ребенка после перевязки пупочного канатика и отделения от организма матери в крови накапливается углекислый газ и снижается количество кислорода. Избыток СО2 гуморально, а недостаток О2 рефлекторно через рецепторы кровеносных сосудов возбуждают дыхательный центр. Это приводит к сокращению дыхательных мышц и увеличению объема грудной клетки, легкие расправляются, происходит первый вдох.

Нервная регуляция оказывает рефлекторное влияние на дыхание. Горячий или холодный раздражитель кожи, боль, страх, гнев, радость, физическая нагрузка быстро меняют характер дыхательных движений.

Источник: yunc.org


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.