Количественное определение натрия хлорида


1. Хлорид — ионы обнаруживают:
— раствором серебра нитрата водным;
— раствором серебра нитрата в присутствии аммиака;
+ раствором серебра нитрата в присутствии ки­слоты азотной;
— раствором серебра нитрата в присутствии кислоты сер­ной.

2. Один из перечисленных ионов дает белый осадок с раствором бария хлорида в присутствии кислоты хлороводородной:
— нитрат-ион;
+ сульфат-ион;
— фосфат-ион;
— сульфид-ион.

3. Синее окрашивание раствора в присутствии аммиака дает:
— ион серебра;
— ион цинка;
— ион железа;
+ ион меди.

4. Розовая окраска калия перманганата исчезает:
— в присутствии кислоты азотной;
— в присутствии кислоты серной;
— в присутствии натрия сульфата и кислоты серной;
+ в присутствии на­трия нитрита и кислоты серной.


5. Перечисленные лекарственные вещества проявляют как окислительные, так и восстановительные свойства:
— калия перманганат;
+ водорода пероксид;
+ натрия нитрит;
— ка­лия иодид.

6. Ион аммония можно обнаружить:
— раствором бария хлорида;
+ реактивом Несслера;
— раствором ка­лия иодида;
— раствором калия перманганата.

7. Кислую реакцию среды имеет раствор:
— натрия гидрокарбоната;
— кальция хлорида;
+ цинка сульфата;
— натрия хлорида.

8. Одно из лекарственных веществ темнеет при действии восстанови­телей:
— калия иодид;
— серебра нитрат;
— натрия бромид;
— фенол.

9. Одно из лекарственных веществ при хранении розовеет вследствие окисления:
+ резорцин;
— натрия хлорид;
+ серебра нитрат;
— бария сульфат для рентгеноскопии.

10. Лекарственное средство «Резорцин» изменил свой внешний вид при хранении вследствие окисления. Какой метод можно использовать для определения допустимого предела изменения данного лекарственного ве­щества:
— определение рН;
— определение степени мутности;
+ определение окраски;
— определение золы.

11. Одним из перечисленных реактивов можно определить примесь иодидов в препарате «Калия бромид», основываясь на различной способно­сти этих двух веществ к окислению:
— калия перманганат;
+ железа (III) хлорид;
— раствор иода;
— се­ребра нитрат.


12. Одно из перечисленных лекарственных веществ при хранении из­меняет свой внешний вид вследствие потери кристаллизационной воды:
— кальция хлорид;
+ меди сульфат;
— натрия иодид;
— калия хлорид.

13. Одним из перечисленных реактивов можно открыть примесь бро­матов в лекарственном средстве «Калия бромид»:
— серебра нитрат;
+ кислота серная;
— бария хлорид;
— аммония ок­салат.

14. ГФ требует определять цветность лекарственного средства «Калия бромид», так как данное вещество может:
— восстанавливаться;
+ окисляться;
— подвергаться гидролизу;
— взаимодействовать с углекислотой воздуха с образованием окрашенных продуктов.

15. Одним из перечисленных реактивов можно открыть примесь иода­тов в препарате «Калия иодид»:
— аммония оксалат;
— натрия гидроксид;
— раствор аммиака;
+ ки­слота хлороводородная.

16. Окрашенным лекарственным веществом является:
+ йод;
— калия хлорид;
— натрия хлорид;
— натрия йодид.


17. При добавлении к раствору лекарственного вещества кислоты азотной разведенной и раствора серебра нитрата образуется белый творожистый осадок, растворимый в растворе аммиака:
— натрия йодид;
— калия йодид;
+ натрия хлорид;
— раствор йода спиртовый 5%.

18. При добавлении к раствору лекарственного вещества раствора хлорамина в присутствии кислоты хлороводородной и хлороформа (при взбалтывании) хлороформный слой окрашивается в желто-бурый цвет:
— калия йодид;
— натрия хлорид;
— натрия фторид;
+ натрия бромид.

19. При взаимодействии кислоты хлороводородной разведенной с марганца (IV) оксидом выделяется:
— кислород;
+ хлор;
— хлора (I) оксид;
— хлора (VII) оксид.

20. Примесь иодидов в препаратах калия бромид и натрия бромид определяют реакцией с:
— серебра нитратом;
— хлорамином;
— кислотой серной концентрированной;
+ железа (III) хлоридом.

21. В химических реакциях проявляют свойства как окислителя, так и восстановителя:
— калия йодид;
+ натрия нитрит;
+ раствор водорода пероксида;
— натрия хлорид.

22. При добавлении к раствору лекарственного вещества раствора ализаринсульфоната натрия и циркония нитрата возникает красное окрашивание, переходящее в желтое:
— натрия хлорид;
— калия хлорид;
+ натрия фторид;
— натрия йодид.


23. При добавлении к раствору лекарственного вещества раствора кислоты виннокаменной и натрия ацетата постепенно выпадает белый кристаллический осадок, растворимый в разведенных минеральных кислотах и щелочах:
+ калия хлорид;
— натрия фторид;
— кислота хлористоводородная разведенная;
— натрия бромид.

24. От прибавления к раствору калия бромида нескольких капель раствора железа (III) хлорида и раствора крахмала появляется синее окрашивание. Это свидетельствует о наличии в лекарственном средстве примеси:
— сульфатов;
+ йодидов;
— броматов;
— хлоридов.

25. От прибавления к раствору натрия бромида кислоты серной концентрированной раствор окрашивается в желтый цвет. Это свидетельствует о наличии примеси:
+ броматов;
— йодидов;
— сульфатов;
— хлоридов.

26. От прибавления к раствору калия хлорида кислоты серной разведенной наблюдается помутнение. Это свидетельствует о наличии в лекарственном средстве следующей примеси:
+ солей бария;
— солей железа;
— солей аммония;
— хлоридов.

27. К раствору лекарственного средства прибавляют раствор йодида калия и титруют раствором натрия тиосульфата до обесцвечивания без индикатора. Это метод количественного определения:
+ раствора йода спиртового 10%;
— кислоты хлористоводородной разведенной;
— натрия хлорида;
— натрия бромида.


28. К раствору лекарственного вещества добавляют уксусный ангидрид, кипятят, охлаждают и титруют кислотой хлорной. Это метод количественного определения:
— натрия хлорида;
+ натрия фторида;
— натрия бромида;
— натрия йодида.

29. Необходимым условием титрования лекарственных веществ группы хлоридов и бромидов методом Мора является:
— кислая реакция среды;
— щелочная реакция среды;
— присутствие кислоты азотной;
+ реакция среды близкая к нейтральной.

30. Щелочную реакцию среды водного раствора имеют:
— натрия хлорид;
— магния сульфат;
+ натрия тетраборат;
+ натрия гидрокарбонат.

31. Кислую реакцию среды водного раствора имеют:
— натрия тетраборат;
+ кислота хлористоводородная;
— кальция хлорид;
+ кислота борная.

32. Выделение пузырьков газа наблюдают при добавлении кислоты хлороводородной к:
+ литию карбонату;
— магния сульфату;
— натрия тетраборату;
— раствору водорода пероксида.

33. Определить примесь минеральных кислот в кислоте борной можно:
— по фенолфталеину;
— по лакмусу красному;
+ по метиловому оранжевому;
— по лакмусу синему.


34. Количество примеси карбонатов в натрия гидрокарбонате устанавливают:
— титрованием кислотой;
— по реакции с насыщенным раствором магния сульфата;
— по окраске фенолфталеина;
+ прокаливанием.

35. Бария сульфат для рентгеноскопии:
— растворим в кислоте хлороводородной;
— растворим в щелочах;
— растворим в аммиаке;
+ нерастворим в воде, кислотах и щелочах.

36. Количественное определение натрия гидрокарбоната проводят методом:
— алкалиметрии;
+ ацидиметрии (прямое титрование);
— ацидиметрии (обратное титрование);
— комплексонометрии.

37. При растворении в воде подвергаются гидролизу:
+ натрия нитрит;
— кальция хлорид;
+ натрия гидрокарбонат;
+ натрия тетраборат.

38. Количественное определение ацидиметрическим методом (обратное титрование) проводят для:
— натрия тетрабората;
— натрия гидрокарбоната;
+ лития карбоната;
— натрия нитрита.

39. В препарате кальция катион Ca2+ можно доказать:
+ по окрашиванию пламени;
— по реакции с аммиаком;
+ по реакции с аммония оксалатом;
— по реакции с кислотой хлороводородной.


40. Общими реакциями на препараты бора являются:
+ образование сложного эфира с этанолом в присутствии концентрированной серной кислоты;
— реакция с кислотой хлороводородной;
+ реакция с куркумином;
— реакция с аммония оксалатом.

41. При неправильном хранении изменяют свой внешний вид:
+ натрия тетраборат;
+ калия йодид;
+ кальция хлорид;
+ магния сульфат.

42. В виде инъекционных растворов применяются:
+ магния сульфат;
+ кальция хлорид;
+ натрия хлорид;
— натрия тетраборат.

43. С помощью метода комплексонометрии количественно определяют:
+ магния сульфат;
+ кальция хлорид;
— лития карбонат;
— натрия тетраборат.

44. Завышенный результат количественного определения вследствие неправильного хранения может быть у:
— кальция хлорида;
+ натрия тетрабората;
+ магния сульфата;
— кислоты борной.

45. При количественном определении кислоты борной добавляют для усиления кислотных свойств:
+ глицерин;
— спирт этиловый;
— раствор аммиака;
— хлороформ.

46. Не пропускает рентгеновские лучи и применяется при рентгенологических исследованиях:
— лития карбонат;
— натрия тетраборат;
+ бария сульфат;
— кислота борная.


47. Доказательство иона лития проводят реакцией:
— с сульфат-ионом;
— с фосфат-ионом в кислой среде;
+ с фосфат-ионом в щелочной среде;
— с фосфат-ионом в нейтральной среде.

48. Общей реакцией на натрия гидрокарбонат и лития карбонат является реакция с:
+ кислотой хлороводородной;
— раствором натрия гидроксида;
— раствором аммиака;
— реакция окрашивания пламени в желтый цвет.

49. В отличие от натрия гидрокарбоната, используемого для приема внутрь, натрия гидрокарбонат, используемый в инъекционных растворах должен:
— не содержать примеси хлоридов;
+ быть бесцветным;
+ быть прозрачным;
— иметь нейтральную реакцию среды.

50. Для доказательства бария сульфата для рентгеноскопии препарат предварительно:
— растворяют в кислоте;
— растворяют в щелочи;
— кипятят с кислотой;
+ кипятят с натрия гидрокарбонатом.

51. Характерную окраску пламени дают:
+ кальция хлорид;
+ натрия гидрокарбонат;
+ лития карбонат;
— магния сульфат.

52. Осадки гидроксидов с аммиаком дают:
+ магния сульфат;
— кальция хлорид;
— лития карбонат;
— бария сульфат.


53. С кислотой хлороводородной реагируют:
+ натрия тиосульфат;
+ натрия гидрокарбонат;
— бария сульфат;
+ лития карбонат.

54. Примесь фосфатов в бария сульфате для рентгеноскопии определяют с:
— молибдатом аммония;
— молибдатом аммония в щелочной среде;
+ молибдатом аммония в азотнокислой среде;
— сульфатом магния.

55. Пламенем с зеленой каймой горит спиртовый раствор:
— кальция хлорида;
+ кислоты борной;
— натрия тетрабората;
— лития карбоната.

56. Кислую реакцию среды водного раствора имеют препараты:
+ цинка сульфат;
— серебра нитрат;
— натрия гидрокарбонат;
— кальция хлорид.

57. Лекарственное вещество в химическом отношении является продуктом гидролиза:
— натрия тиосульфат;
+ висмута нитрат основной;
— бария сульфат;
— натрия тетраборат.

58. Перечисленные лекарственные вещества, кроме одного, могут проявлять в химических реакциях свойства восстановителя:
— водорода пероксид;
— железа (II) сульфат;
— калия йодид;
+ серебра нитрат.

59. С раствором аммиака комплекс синего цвета образует лекарственное вещество:
— серебра нитрат;
— цинка сульфат;
— висмута нитрат основной;
+ меди сульфат.


60. Лекарственное вещество с калия йодидом в водном растворе образует осадок, растворяющийся в избытке реактива:
+ висмута нитрат основной;
— серебра нитрат;
— меди сульфат;
— железа сульфат.

61. Для проведения испытания подлинности и количественного определения препарата требуется предварительная минерализация:
— висмута нитрат основной;
+ протаргол;
— цинка оксид;
— бария сульфат.

62. При количественном определении железа сульфата, цинка сульфата, натрия тетрабората, меди сульфата, натрия тиосульфата — завышенный результат может быть получен из-за:
— поглощения влаги;
+ потери кристаллизационной воды;
— гидролиза;
— поглощения оксида углерода (IV).

63. Методом комплексонометрии в кислой среде количественно определяют лекарственное вещество:
— цинка оксид;
— магния оксид;
— магния сульфат;
+ висмута нитрат основной.

64. Методом комплексонометрии в присутствии гексаметилентетрамина количественно определяют лекарственное вещество:
— магния сульфат;
+ цинка оксид;
— кальция хлорид;
— висмута нитрат основной.

65. По списку «А» хранят препарат:
— бария сульфат;
— цинка сульфат;
+ серебра нитрат;
— натрия тетраборат.

66. Серебра нитрат по нормативной документации количественно определяют методом:
— меркуриметрия;
+ тиоционатометрия;
— йодометрия,
— комплексонометрия.

67. Методом перманганатометрии можно количественно определить все лекарственные вещества кроме:
— железа сульфата;
— натрия нитрита;
+ серебра нитрата;
— раствора пероксида водорода.

68. Заниженный результат при количественном определении железа (II) сульфата был получен в результате:
— восстановления препарата;
+ окисления препарата;
— гигроскопичности препарата;
— выветривания препарата.

69. Для цинка оксида, магния сульфата, висмута нитрата основного, кальция хлорида — общим методом количественного определения является:
— гравиметрия;
— перманганатометрия;
— йодометрия;
+ комплексонометрия.

70. Описание свойств: «белый аморфный или кристаллический порошок; практически нерастворимый в воде; смоченный водой окрашивает синюю лакмусовую бумагу в красный цвет» — соответствует лекарственному веществу:
— магния сульфату;
— колларголу;
+ висмута нитрату основному;
— цинка оксиду.

71. Реакции окисления используют в анализе лекарственных средств:
+ калия йодид;
+ глюкоза;
+ хлоралгидрат;
+ кислота аскорбиновая

72. При количественном определении меди сульфата, магния сульфата, натрия тетрабората, цинка сульфата — завышенный результат может быть получен вследствие:
— поглощения влаги;
+ потери кристаллизационной воды;
— гидролиза;
— поглощения диоксида углерода.

73. Одно из лекарственных веществ не может быть использовано и в качестве лекарственного средства, и реактива, и титрованного раствора:
— кислота хлороводородная;
— калия перманганат;
+ раствор аммиака;
— натрия нитрит.

74. Формальдегид легко вступает в реакции:
+ присоединения;
+ окислительно-восстановительные;
— замещения;
— обмена.

75. Все лекарственные вещества представляют собой белые кристаллические порошки, кроме:
— лактозы;
— хлоралгидрата;
+ фторотана;
— гексаметилентетрамина.

76. Наличие перекисных соединений как недопустимой примеси в эфире для наркоза определяют по реакции с :
— калия перманганатом в кислой среде;
— натрия гидроксидом;
+ калия йодидом;
— кислотой хромотроповой.

77. И соли аммония, и параформ определяют в одном из лекарственных средств:
— спирт этиловый;
— раствор формальдегида;
+ гесаметилентетрамин;
— глюкоза.

78. Реакцию образования йодоформа нельзя использовать для:
— определения подлинности этанола;
— определения примеси хлоралкоголята в хлоралгидрате;
— определения подлинности лактат-иона;
+ примеси метанола в спирте этиловом.

79. Формула для расчета концентрации раствора применяется при использовании:
+ рефрактометрии;
— поляриметрии;
— полярографии;
— спектрофотометрии.

80. Удельный показатель поглощения это:
+ оптическая плотность раствора, содержащего 1 г вещества в 100 мл раствора при толщине слоя 1 см;
— показатель преломления раствора;
— угол поворота плоскости поляризации монохроматического света на пути длиной в 1 дм и условной концентрации 1 г/мл;
— фактор, равный величине прироста показателя преломления при увеличении концентрации на 1%.

81. Для обнаружения альдегидов как примеси в других лекарственных средствах используют наиболее чувствительную реакцию с:
— реактивом Фелинга;
— реактивом Толленса;
— кислотой салициловой в присутствии кислоты серной;
+ реактивом Несслера.

82. При хранении раствора формальдегида в нем образовался белый осадок. Это обусловлено:
— хранением препарата при температуре выше 9 оС;
+ хранением при температуре ниже 9 оС;
— хранением при доступе влаги;
— хранением в посуде светлого стекла.

83. Натрия гидрокарбонат и натрия метабисульфит одновременно добавляют для стабилизации раствора для инъекций:
+ кислоты аскорбиновой;
— магния сульфата;
— гексаметилентетрамина;
— глюкозы.

84. С реактивом Фелинга не реагирует:
— глюкоза;
— раствор формальдегида;
— лактоза;
+ калия ацетат.

85. Количественное определение кислоты аскорбиновой можно проводить методами:
— ацидиметрии;
+ алкалиметрии;
+ йодометрии;
+ йодатометрии.

86. Количественное определение калия ацетата можно проводить методами:
— йодометрии;
— нитритометрии;
+ кислотно-основного титрования в неводной среде;
+ ацидиметрии.

87. Значение величины молярной массы эквивалента кислоты аскорбиновой при йодатометрическом количественном определении равно:
— М.м. кислоты аскорбиновой;
+ Ѕ М.м. кислоты аскорбиновой;
— 1/3 М.м. кислоты аскорбиновой;
— ј М.м. кислоты аскорбиновой.

88. Комплексонометрическим методом количественно определяют лекарственные вещества:
— кислота аскорбиновая;
— калия ацетат;
+ кальция глюконат;
+ магния сульфат.

89. Восстанавливающими свойствами обладают лекарственные средства:
+ калия йодид;
+ кислота аскорбиновая;
— натрия хлорид;
+ раствор формальдегида.

90. Кислота аскорбиновая образует соль с реактивом:
— железа (III) хлоридом;
— серебра нитратом;
+ железа (II) сульфатом;
— натрия гидрокарбонатом.

91. Методом кислотно-основного титрования количественно определяют:
+ калия ацетат;
— серебра нитрат;
+ аминалон;
— раствор тетацина кальция.

92. Для консервирования крови используют:
— кислоту глутаминовую;
— кальция хлорид;
+ натрия цитрат для инъекций;
— калия ацетат.

93. Витаминным средством является:
— аминалон;
— пирацетам;
— кислота глутаминовая;
+ кислота аскорбиновая.

94. Для количественного определения аминалона можно использовать:
+ метод кислотно-основного титрования в неводных средах;
— комплексонометрию;
+ алкалиметрию в присутствии формальдегида;
— аргентометрию.

95. С раствором меди сульфата в определенных условиях реагируют:
+ кислота глутаминовая;
+ глюкоза;
+ калия йодид;
— магния сульфат.

96. Кислоту аскорбиновую количественно можно определить:
+ алкалиметрически;
— аргентометрически;
+ йодометрически;
+ йодатометрически.

97. Щелочную реакцию среды водного раствора имеет:
— натрия хлорид;
— калия бромид;
+ калия ацетат;
+ натрия гидрокарбонат.

98. Кислую реакцию среды водного раствора имеют:
+ кислота аскорбиновая;
— аминалон;
+ кислота глутаминовая;
— кальция лактат.

99. С раствором железа (III) хлорида реагируют:
+ кислота аскорбиновая;
+ кальция глюконат;
+ калия ацетат;
+ калия йодид.

100. Амфолитами являются:
+ цинка оксид;
+  аминалон;
— кислота аскорбиновая;
— калия ацетат.

101. Метод йодометрии используют для количественного определения:
— натрия бромида;
+ метионина;
+ цистеина;
+ кислоты аскорбиновой.

102. Серусодержащими аминокислотами являются:
— кислота аскорбиновая;
— аминалон;
+ метионин;
+ цистеин.

103. Метод Кьельдаля используют для количественного определения:
— нитроглицерина;
+ пирацетама;
— раствора формальдегида;
+ аминалона.

104. Гидроксамовую реакцию дают:
— кальция лактат;
— аминалон;
+ пирацетам;
— калия ацетат.

105. Кислотные свойства кислоты аскорбиновой обусловлены наличием в структуре:
— фенольных гидроксилов;
— одного енольного гидроксила;
+ двух енольных гидроксилов;
— лактонного кольца.

106. При количественном определении метионина йодометрическим методом образуется:
— сероводород;
— дисульфид метионина;
+ сульфоксид метионина;
— сульфат метионина.

107. Оптически активными веществами являются:
+ кислота глутаминовая;
— метионин;
+ кислота аскорбиновая;
— калия ацетат.

108. Щелочному гидролизу подвергаются:
— калия ацетат;
+ нитроглицерин;
+ кислота аскорбиновая;
+ пирацетам.

109. При сплавлении со щелочью меркаптан образует:
— аминалон;
+ метионин;
— кислота глутаминовая;
— раствор тетацина кальция для инъекций.

110. Значение удельного вращения определяют у:
— метионина;
— калия ацетата;
— спирта этилового;
+ кислоты глутаминовой.

111. Двухосновной аминокислотой является:
— аминалон;
— пирацетам;
+ кислота глутаминовая;
— метионин.

112. Солью азотсодержащего органического основания является:
+ стрептомицина сульфат;
— феноксиметилпенициллин;
— оксациллина натриевая соль;
— цефалотина натриевая соль.

113. По химическому строению гликозидом является:
— цефалексин;
— феноксиметилпенициллин;
+ амикацина сульфат;
— карбенициллина динатриевая соль.

114. К группе b-лактамидов относится:
— канамицина сульфат;
+ цефалексин;
— амикацина сульфат;
— гентамицина сульфат.

115. Полусинтетическим пенициллином не является:
— оксациллина натриевая соль;
+ феноксиметилпенициллин;
— клоксациллина натриевая соль;
— ампициллин.

116. Лекарственное вещество белого цвета, растворимо в воде, при взаимодействии с 1-нафтолом и натрия гипохлоритом дает красное окрашивание:
— цефалотина натриевая соль;
— оксациллина натриевая соль;
+ стрептомицина сульфат;
— феноксиметилпенициллин.

117. Лекарственное вещество белого цвета, растворимо в воде, при нагревании с натрия гидроксидом и последующим добавлении кислоты хлороводородной и железа (III) хлорида образуется фиолетовое окрашивание:
+ стрептомицина сульфат;
— амоксициллина тригидрат;
— бензилпенициллина натриевая соль;
— карбенициллина динатриевая соль.

118. Амфотерный характер проявляют лекарственные вещества:
— бензилпенициллина натриевая соль;
— феноксиметилпенициллин;
— стрептомицина сульфат;
+ цефалексин.

 119. Реакции окисления используют в анализе лекарственных веществ:
+ калия йодида;
+ глюкозы;
+ хлоралгидрата;
+ кислоты аскорбиновой

120. Получение гидроксаматов железа (III) или меди (II) возможно для:
+ оксациллина натриевой соли;
+ цефалексина;
+ бензилпенициллина;
+ феноксиметилпенициллина.

121. Изменение химической структуры под действием щелочей происходит у лекарственных веществ:
— канамицина сульфат;
+ цефалексина;
+ феноксиметилпенициллина;
+ стрептомицина сульфата.

122. Феноксиметилпенициллин можно отличить от бензилпенициллина натриевой соли по:
+ реакции с кислотой хромотроповой;
— внешнему виду;
+ растворимости в воде;
— гидроксамовой реакции.

123. При количественном определении синэстрола методом ацетилирования параллельно проводят контрольный опыт потому, что:
— ангидрид уксусный, используемый для ацетилирования синэстрола, не является титрованным раствором;
— синэстрол при ацетилировании определяют методом обратного титрования;
+ ацетилирование синэстрола проводят в жестких условиях (длительное нагревание);
— при количественном определении синэстрола методом ацетилирования контрольный опыт не проводят.

124. Для количественного определения бензилпенициллина натриевой соли можно применить методы:
+ гравиметрический;
+ йодиметрический;
+ микробиологический;
— нитритометрический.

125. Для количественного определения оксациллина натриевой соли можно применить методы:
+ нейтрализации;
+ УФ-спектрофотометрии;
+ фотоэлектроколориметрии;
— нитритометрии.

126. Бензилпенициллина калиевая соль несовместима в водных растворах с:
— натрия хлоридом;
+ натрия гидрокарбонатом;
+ новокаином;
— адреналина гидрохлоридом.

127. a-кетольную группу в своей структуре содержат:
+ гидрокортизон;
— прогестерон;
— метилтестостерон;
+ преднизолон.

128. a-кетольную группу в кортикостероидах можно доказать реакциями с:
+ реактивом Фелинга;
— раствором гидроксиламина;
+ аммиачным раствором серебра нитрата;
+ раствором 2,3,5-трифенилтетразолия.

129. Реагентом, позволяющим дифференцировать стероидные гормоны является:
+ кислота серная концентрированная;
— реактив Фелинга;
— раствор кислоты азотной концентрированной;
— раствор гидроксиламина.

130. Гидроксамовая реакция может быть использована в анализе:
— дигитоксина;
+ дезоксикортикостерона ацетата;
— камфоры;
— дексаметазона.

131. Реакция образования оксима может быть применена для анализа:
— метиландростендиола;
+ прегнина;
+ камфоры;
— эстрадиола дипропионата.

132. Кортизон взаимодействует с гидроксиламином за счет:
— стероидного цикла;
+ кето-группы в 3-м положении;
— спиртового гидроксила;
+ a-кетольной группы.

133. Реакцию образования 2,4-динитрофенилгидразона применяют для количественного определения:
— этинилэстрадиола;
— преднизона;
+ прогестерона;
— кортизона ацетата.

134. Отличить преднизолона ацетат от кортизона ацетата можно по реакции с:
— раствором гидроксиламина;
+ кислотой серной концентрированной;
— реактивом Фелинга;
— раствором фенилгидразина.

135. Общей реакцией идентификации для приведенных соединений являются:
— образование оксима;
+ образование азокрасителя;
— взаимодействие с раствором серебра нитрата;
+ ацетилирование.

136. Дезоксикортикостерон дает оранжево-желтый осадок с:
— раствором серебра нитрата;
+ реактивом Фелинга;
— уксусным ангидридом;
— раствором гидроксиламина.

137. При определении посторонних примесей в кортизоне ацетате используют метод:
— УФ-спектрофотометрии;
— гравиметрии;
— фотоэлектроколриметрии;
+ тонкослойной хроматографии.

138. Реакцию образования сложного эфира с последующим определением его температуры плавления используют для идентификации:
+ метилтестостерона;
— тестостерона пропионата;
— кортизона ацетата;
+ синэстрола.

139. Дигитоксин дает окрашенные продукты при взаимодействии с:
+ кислотой уксусной ледяной, содержащей 0,05% железа (III) хлорида и кислоту серную концентрированную;
+ кислотой серной концентрированной;
+ щелочным раствором натрия нитропруссида;
+ реактивом Фелинга.

140. Строфантин-К реагирует с образованием окрашенных продуктов с реактивами:
+ кислотой серной концентрированной;
+ кислотой пикриновой;
— железа (III) хлоридом;
+ щелочным раствором натрия нитропруссида.

141. Структурная формула соответствует лекарственному веществу:
Количественное определение натрия хлорида
— дикаину;
+ фенилсалицилату;
— кислоте мефенамовой;
— парацетамолу.

142. Рациональное название — натрия 2-[(2,6-дихлорфенил)аминофенил] ацетат — принадлежит лекарственному веществу:
+ ортофен;
— викасол;
— парацетамол;
— кислота ацетисалициловая.

143. Незамещенный фенольный гидроксил в химической структуре имеет лекарственное вещество:
— новокаин;
+ парацетамол;
— натрия бензоат;
— анестезин.

144. Легко растворимо в воде лекарственное вещество:
+ новокаин;
— кислота ацетилсалициловая;
— тимол;
— фенилсалицилат.

145. Образование азокрасителя с солью диазония без предварительного гидролиза возможно для лекарственного вещества:
— новокаина;
— тримекаина;
— парацетамола;
— кислоты бензойной.

146. Гидроксамовая проба может быть применена для идентификации лекарственного вещества:
— тимола;
+ новокаина;
— натрия бензоата;
— резорцина.

147. Примесь кислоты салициловой в лекарственном веществе «Кислота ацетилсалициловая» можно определить с помощью реактивов:
+ железа (III) хлорид;
— натрия нитрит в кислой среде;
— бромная вода;
— соль диазония.

148. Производным ацетанилида являются:
+ парацетамол;
— галоперидол;
— анестезин;
+ тримекаин.

149. Сложными эфирами являются:
— тетрациклин;
+ прозерин;
— натрия салицилат;
— галоперидол.

150. Амидная группа имеется в химической структуре:
— тимола;
— анестезина;
— фенилсалицилата;
+ тримекаина.

151. В реакции комплексообразования с солями тяжелых металлов вступают:
+ натрия пара-аминосалицилат;
— новокаин;
+ натрия салицилат;
+ парацетамол.

152. Алкалиметрия может быть использована для количественного определения:
— натрия бензоата;
+ кислоты салициловой;
— анестезина;
+ кислоты ацетилсалициловой.

153. Броматометрия может быть использована для количественного определения:
— тримекаина;
+ парацетамола;
+ натрия салицилата;
— кислоты бензойной.

154. Нитритометрия может быть использована для количественного определения:
+ новокаина;
— тимола;
— резорцина;
— викасола.

155. При количественном определении парацетамола методом нитритометрии необходима стадия предварительного кислотного гидролиза потому, что:
— в химическую структуру парацетамола входит простая эфирная группа;
— в химическую структуру парацетамола входит сложная эфирная группа;
+ кислотный гидролиз проводят для деблокирования первичной ароматической аминогруппы;
— при нитритометрическом количественном определении парацетамола предварительного кислотного гидролиза не проводят.

Источник: farmf.ru

/. Количественное определение атропина сульфата Метод нейтрализации в среде хлороформа К I мл раствора прибавляют 2 мл хлороформа и титруют 0,05 моль/, раствором натрия гидроксида до розового окрашивания водного слоя. Индикагор 3 капли фенолфталеина (V,).

[атропин]2 • Н2S04 + 2NaOH —> 2[атропин] + Na2S04 + 2Н20

М = 694,8 f= 1/2 Cf=0,05 моль/л

mатропин = V*K*T* A

навеска

 

доп.отклонения =±? V = ?

op

Количественное определение натрия хлорида Аргентометрия с поверхностно-действующим индикатором. Memoд Фаянса.

К 1 мл раствора прибавляют 3 капли бромфенолового синего и го каплям разведенную уксусную кислоту, пока фиолетовое окрашивание hi перейдет в зеленовато-желтое (~3 капли) и титруют 0,05 моль/л растворо» нитрата серебра до фиолетового окрашивания осадка.

1 мл 0,05 моль/л раствора нитрата серебра соответствует 0,002922 натрия хлорида (V,).

NaCl + AgNO3 -> AgCl + NaNO3

0,05 моль/л

mNaCl = V*K*T* A

навеска

 

ДОП.ОТКЛ = ? Vор = ?

Атропина сульфат перечислен в списке лекарственных средств, выписываемых на бланке формы №148-1/У-88. Этот бланк дополнительм заверяется печатью лечебно-профилактического учреждения «Для ре цептов». Срок действия рецепта 10 дней. Рецепт хранится в аптеке 1 год. Больному выписывается сигнатура.

 

ЗАНЯТИЕ 7

ВНУТРИАПТЕЧНЫЙ КОНТРОЛЬ ПОРОШКОВ ПАПАВЕРИНА ГИДРОХЛОРИДА № 100.

ВНУТРИАПТЕЧНАЯ ЗАГОТОВКА (ВАЗ )

Задачи

.1. совершенствовать навыки иумения проведения внутриаптечного контроля внутриаптечной заготовки порошков

2. Освоить внутриаптечный контроль папаверина гидрохлорида

 

Продолжительность занятия

2 академических часа (90 минут).

Вопросы для самоподготовки

• Составьте алгоритм внутриаптечного контроля внутриаптечной заготовки порошков с папаверином гидрохлоридом.

• Приказ М3 РФ № 214 от 16.07.97 об анализе внутриаптечной заготовк

• Химический контроль папаверина гидрохлорида. Расчеты. Оформление результатов контроля.

Материальное обеспечение

а) Реактивы и растворители:

• кислота азотная концентрированная; кислота азотная;

• кислота серная концентрированная;

• раствор гидроксида натрия;

• кислота хлористоводородная;

• раствор гидроксида аммония;

• реактив Марки;

• раствор серебра нитрата;

• резорцин (кристаллический);

• раствор кобальта нитрата;

• спирт этиловый.

б)Титрованные растворы и индикаторы:

• 0,1 моль/л раствор натрия гидроксида;

• фенолфталеин.

в)Посуда, приборы, оборудование:

• титровальная установка;

• микробюретка;

• ручные весочки и разновес;

• склянка для титрования;

• фарфоровая чашка или часовое стекло;

• водяная баня

Rp: Papaverini hydrochloridi 0,02

Sacchari 0,2

Внутриаптечная заготовка № 100

 

Количественное определение натрия хлорида

 

Свойства

Белый сыпучий однородный порошок без запаха.

ПОДЛИННОСТЬ

 

1. На основание папаверина

Все реакции подлинности основаны на легкой окисляемости папаверина за счет 4-х метоксигрупп.

а) с концентрированной азотной кислотой

К 0,02 г порошка прибавляют 1-2 капли реактива. Появляется желтое окрашивание, которое при нагревании на водяной бане переходит в оранжевое.

б) с концентрированной серной кислотой

К 0,02 г порошка прибавляют 1-2 капли реактива, нагревают. Появляется сине-фиолетовое окрашивание.

в) с реактивом Марки ( концентрированная серная кислота со следами формальдегида )

К 0,02 г порошка прибавляют 1-2 капли реактива, слабо нагревают на водяной бане. Появляется фиолетовое окрашивание.

 

на Cl

0,01 порошка растворяют в 0,5 мл воды и прибавляют по I капле разведенной азотной кислоты и раствора нитрата серебра. Наблюдают образование белого творожистого осадка, нерастворимого в азотной кислоте и растворимого в растворе аммиака.

Cl + AgNO3 = AgC’l + N03

На сахар

К 0,02 г порошка прибавляют 1-2 мл хлористоводородной кислоты несколько кристаллов резорцина и кипятят 1 минуту. Появляется красное ок рашивание

 

Количественноеопределение

Метод нейтрализации в спиртовой среде

0,22 г (масса одного порошка) растворяют в 2 мл спирта, прибавляют 3-5 капель фенолфталеина и титруют 0,1 моль/л раствором натрия гидроксидадо розового окрашивания

 

Iпапаверин |* НCI + NaOH —> [папаверин] + NaCl + H20

0,1 моль/л

1 мл 0,1 моль/л раствора натрия гидроксида соответствует 0,03759 г папаверина гидрохлорида

Содержание папаверина гидрохлорида рассчитывают на всю массу, взятую для изготовления внутриаптечной заготовки данной серии

 

mпапаверина = V * K * T * 22

0,22

^

доп.откл = ±4% Vop = ?

Папаверина гидрохлорид по ГФ X хранится по списку Б.

ВРД = 0,2

ВСД = 0,6 внутрь

Источник: megalektsii.ru

Аргентометрический метод

Метод основан на следующем принципе: к нейтральному раствору хлорида прибавляют в качестве индикатора несколько капель хромовокислого калия и титруют раствором азотнокислого серебра. При этом образуется красный осадок хромовокислого серебра

Реакция

Этот осадок исчезает при взбалтывании, так как между хромовокислым серебром и хлористым натрием происходит обменное разложение и образуется нерастворимый осадок хлористого серебра.

Реакция

В момент превращения всего хлора в хлористое серебро жидкость, над осадком приобретает неисчезающую красноватую окраску, что указывает на конец реакции.

Методика определения. Навеску измельченного продукта от 5 до 25 г (в зависимости от предполагаемого содержания соли) берут в небольшой стаканчик с точностью до 0,01 г и количественно переносят через воронку в мерную колбу емкостью 250 мл, смывая частицы продукта дистиллированной водой. Содержимое колбы доливают водой до 3/4 объема, тщательно взбалтывают и в случае анализа продуктов растительного происхождения нагревают на кипящей водяной бане в течение 15 мин. При анализе веществ, богатых крахмалом или белками, содержимое колбы выдерживают при 30° С в течение 30 мин при частом взбалтывании. После этого содержимое колбы охлаждают, доводят дистиллированной водой до метки, взбалтывают и фильтруют через складчатый фильтр в сухую колбу.

50 мл фильтрата отмеривают пипеткой, переносят в коническую колбу емкостью 250 мл, нейтрализуют 0,1 н. раствором щелочи в присутствии фенолфталеина, прибавляют 0,5 мл 10%-ного раствора хромовокислого калия и титруют 0,1 н. раствором азотнокислого серебра. При титровании содержимое колбы непрерывно перемешивают до появления не исчезающей при взбалтывании красноватой окраски. Если водная вытяжка вещества интенсивно окрашена, то навеску исследуемого продукта берут в фарфоровый тигель и осторожно обугливают до тех пор, пока содержимое тигля не будет легко распадаться от надавливания стеклянной палочкой.

Обугленное вещество охлаждают, количественно переносят через воронку в мерную колбу емкостью 250 мл, смывая тигель несколько раз дистиллированной водой. Колбу доливают до 3/4 объема горячей дистиллированной водой и выдерживают 15 мин в кипящей водяной бане при периодическом взбалтывании. После охлаждения содержимое колбы доводят дистиллированной водой до метки, перемешивают и фильтруют через складчатый фильтр в сухую колбу. 50 мл фильтрата переносят в коническую колбу, нейтрализуют и титруют так же, как указано выше.

Содержание поваренной соли (в %) в обоих случаях рассчитывают по следующей формуле:

Реакция

где V — количество мл 0,1 н. раствора азотнокислого серебра, пошедшего на титрование; К — коэффициент поправки к титру раствора азотнокислого серебра; 0,00585 — титр азотнокислого серебра, выраженный по хлористому натрию; V1 — объем вытяжки, приготовленной из навески, мл; g — навеска вещества, г; V2 — объем вытяжки, взятой для титрования, мл.

Меркурометрический метод

Принцип метода. При взаимодействии раствора хлорида с раствором нитрата закисной ртути образуется светло-серый нерастворимый осадок однохлористой ртути (каломель):

Реакция

При количественном определении хлоридов по этому методу в качестве индикатора применяют дифенилкарбазон или бромфеноловый синий.

Методика определения. Приготовление водной вытяжки исследуемого продукта см. «Определение поваренной соли аргентометрическим методом». Из подготовленной вытяжки берут пипеткой 10-20 мл в коническую колбу емкостью 100-150 мл, добавляют концентрированную азотную кислоту из расчета 0,5 мл на 10 мл вытяжки и после взбалтывания 4-6 капель 1%-ного спиртового раствора дифенилкарбазона; раствор титруют 0,1 н. раствором азотнокислой закиси ртути до резкого перехода светло-серой окраски реакционной смеси в голубую или сине-фиолетовую. Если в качестве индикатора применяют бромфеноловый синий, то азотную кислоту не добавляют; к вытяжке приливают 6-8 капель 0,1%-ного водного раствора индикатора и титруют 0,1 н. раствором азотнокислой закиси ртути. При титровании окраска испытуемого раствора изменяется от мутно-зеленоватой через светло-серую к сиреневой, которая указывает на окончание реакции.

Титрование следует проводить в двух параллельных пробах: титрованием первой пробы устанавливают приблизительное количество раствора азотнокислой закиси ртути, идущей на титрование, а на основании этого вторую пробу уже точно оттитровывают раствором азотнокислой закиси ртути, прибавляя индикатор перед концом титрования.

При определении поваренной соли в концентратах, содержащих молоко, в качестве индикатора применяют только дифенилкарбазон. Содержание поваренной соли в процентах вычисляют по формуле, приведенной в аргентометрическом методе. Здесь V соответствует количеству миллилитров 0,1 н. раствора азотнокислой закиси ртути, пошедшей на титрование, а 0,00585 — титру азотнокислой закиси ртути, выраженному по хлористому натрию. Остальные буквы имеют то же значение, что и в приведенной выше формуле.

Приготовление реактивов

1. 0,1 н. раствор азотнокислой закиси ртути. 30 г азотнокислой закиси ртути отвешивают с точностью до 0,1 г и растворяют в 400 мл теплой дистиллированной воды, в которую предварительно приливают 14,1 мл концентрированной азотной кислоты. После растворения реактива общий объем раствора доводят водой до 1 л. Титр раствора устанавливают через сутки после приготовления по навеске хлорида натрия (около 0,15 г), которую растворяют в 10 мл дистиллированной воды и титруют, добавив 0,5 мл концентрированной азотной кислоты и 6-8 капель дифенилкарбазона.

2. 1%-ный раствор дифенилкарбазона. 1 г реактива растворяют в 100 мл 96%-ного спирта, хранят в склянке из темного стекла.

3. 0,1-ный водный раствор бромфенолового синего (см. главу 6).

Источник: www.spec-kniga.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.