Где происходит газообмен

ГАЗООБМЕН — совокупность процессов обмена газов между организмом человека или животного и окружающей средой; состоит в потреблении организмом кислорода, выделении углекислого газа и незначительных количеств газообразных продуктов и паров воды. Конечная утилизация питательных веществ и использование их энергии для жизнедеятельности организма, образование тепла и поддержание постоянной температуры тела у теплокровных животных и человека невозможны без постоянно совершающегося Г.

Изучение Г. у человека важно для оценки динамики заболевания, эффективности его лечения и степени компенсации. Исследования Г. широко проводят и у здоровых людей; на основании полученных данных разрабатывают режимы питания для лиц разных профессий, нормы кубатуры и вентиляции герметичных помещений и др.

Экспериментальные исследования Г. у животных проводят с целью изучения многих общих и специальных биол, проблем (экологии, эволюционного развития, метаморфоза, спячки, шока и др.). Исследования Г. в фармакологии и эндокринологии позволяют выяснить воздействие разных веществ на интенсивность окислительных процессов; они нашли широкое применение во многих специальных областях медицины (анестезиологии, авиационной, космической, подводной медицине и т. д.). В связи с профилактикой декомпрессионных расстройств большой интерес представляет изучение обмена азота между организмом и окружающей средой.


Основу современных представлений о Г. составляет закон сохранения вещества и энергии, открытый М. В. Ломоносовым в 1748 г., а систематическое исследование Г. началось с работ А. Лавуазье (1777). В России классические исследования ряда вопросов Г. начаты И. М. Сеченовым (учение о газах крови, о составе альвеолярного воздуха) и его учениками. Большое значение имели работы А. А. Лихачева (1893 и др.), установившего совпадение результатов, получаемых при прямой калориметрии и исследовании Г. (непрямая калориметрия), позже подтвержденных в США Бенедиктом (F. Benedict, 1894) и в Германии М. Рубнером (1894). Полученные результаты послужили окончательному утверждению закона сохранения энергии в приложении к организму человека. И. М. Сеченов и М. Н. Ш а тер ников (1901) были пионерами в разработке методов изучения Г. и его измерений при мышечной активности. Работами

К. Фойта (1875), М. Петтенкофера (1863) и Э. Пфлюгера учение о Г. было положено в основу физиологии и гигиены питания. Большой вклад в развитие теории и практики Г. внесли советские ученые Б. Е. В отчал, Е. М. Крепе и др.


В зависимости от сложившихся в фи л о- и онтогенезе анатомо-физиол. и экол. особенностей организма Г. осуществляется разными путями: у простейших и нек-рых многоклеточных — путем диффузии газов непосредственно через поверхность тела; у высокоорганизованных животных и человека через кожу и жел.-киш. тракт происходит лишь незначительная часть Г., а основная его часть обеспечивается системами дыхания и кровообращения.

Механизмы Г. у человека сводятся к внешнему, или легочному, дыханию (см.), обеспечивающему обмен газов между наружным и альвеолярным воздухом и между альвеолярным воздухом и кровью; связыванию газов кровью и их переносу к тканям с последующей диффузией между кровью и межтканевой жидкостью; тканевому дыханию (см. Окисление биологическое). Внешнее дыхание обеспечивает активную вентиляцию альвеол и поддержание почти постоянного парциального давления углекислого газа (pCO2) и кислорода (pO2) в альвеолярном воздухе. Разница между pO2 в альвеолярном воздухе (100 мм рт. ст.) и напряжением кислорода в крови, притекающей к капиллярам малого круга кровообращения (40 мм рт. ст.), обеспечивает быстрый переход кислорода из альвеол в кровь; вследствие высокой диффузионной способности легких pO2 в оттекающей от легочных капилляров крови приближается к альвеолярному pO2.

Интенсивность Г. меняется в зависимости от условий среды. У человека в довольно широком интервале температуры окружающей среды (приблизительно от 15 до 25°) интенсивность Г.


чти не меняется (так наз. зона безразличия). При более низкой температуре Г. возрастает; при интенсивном охлаждении, когда терморегуляция оказывается недостаточной и температура тела понижается, Г. довольно долго остается высоким, но затем начинает уменьшаться в соответствии со снижением температуры тела. При повышении температуры среды интенсивность Г. уменьшается. Однако при дальнейшем повышении температуры, когда наступает гипертермия, интенсивность Г. возрастает.

В процессе эволюции у человека и животных выработалась способность поддерживать относительное постоянство скорости потребления кислорода (vO2) в широком диапазоне изменений содержания его во вдыхаемом воздухе. Вдыхание чистого кислорода у здорового человека не увеличивает vO2. Однако при очень низком pO2, когда системы дыхания и кровообращения уже не в состоянии обеспечить поступления достаточного количества кислорода к тканям, потребление его резко падает.

Г. у человека и животных исследуют в условиях полного покоя, при температуре комфорта (18— 23°), натощак. Количество потребляемого при этом кислорода и освобождаемой энергии характеризует уровень основного обмена (см.), к-рый зависит от площади поверхности тела, возраста и пола.

Колебания в интенсивности Г. связаны гл. обр. с изменениями в деятельности организма в целом, отдельных его органов и тканей, а также с нек-рыми качественными особенностями тканевого дыхания.


еличение Г. (так наз. эффект специфически-динамического действия) наступает после приема пищи, богатой белками. Это явление может быть объяснено увеличением vO2 органами, активно участвующими в пищеварении. Мышечная деятельность сопровождается усилением Г. Так, у тренированных спортсменов vO2 может увеличиваться с 200 до 5000 мл в 1 мин. (так наз. максимальное потребление кислорода — МПК, или O2-потолок). При длительной работе средней интенсивности вначале происходит быстрое нарастание vO2 и vCO2 (скорость выделения углекислого газа), достигающее к 3—6 мин. постоянного уровня (так наз. работа с устойчивым состоянием). При высокоинтенсивных нагрузках доставка кислорода к тканям отстает от кислородного запроса организма, вследствие чего образуется большая кислородная задолженность, выражающаяся в том, что и после окончания работы сохраняется высокое значение vO2, лишь постепенно возвращающееся к исходному уровню. Характерно также изменение vCO2, приводящее к повышению (выше 1,0) дыхательного коэффициента (т. е. отношения объема выделяемого углекислого газа к количеству потребляемого кислорода: CO2/O2) во время работы и понижению его (ниже 0,7) после работы (см. Дыхательный коэффициент). Избыточная vCO2 во время работы связана с вытеснением углекислоты из буферных соединений вследствие усиленного образования и накопления кислых продуктов обмена веществ.

окончании работы в организме происходит большее по сравнению с выделением углекислоты потребление кислорода. Этим обусловливается снижение дыхательного коэффициента. При умеренной работе дыхательный коэффициент близок к 1,0, что связано с преимущественным использованием углеводов. При очень длительной работе по мере истощения в организме запасов углеводов дыхательный коэффициент постепенно снижается, указывая на увеличение доли использования жиров в обмене веществ. Т. о., vO2, vCO2 и высвобождающаяся энергия зависят от многих факторов: величины основного обмена, температурных условий, специфически-динамического влияния пищи и прежде всего от мышечной деятельности. Поэтому суточное потребление кислорода находится в пределах от 300 л (у лежачего больного) до 1000 л и выше (у лиц, занимающихся физ. трудом и спортом); расход энергии при этом составляет 1500—5000 ккал и более. Соответственно происходят сдвиги дыхательного коэффициента, связанные с изменением обмена веществ (см. Обмен веществ и энергии), кислотно-щелочного равновесия (см.) и легочной вентиляции (см.).

Г. суммарно отражает интенсивность окислительно-восстановительных процессов, происходящих во всех органах и тканях, и находится под контролем нервной системы. Многочисленными исследованиями на животных и человеке показано большое значение условнорефлекторной регуляции Г. Нервная система регулирует интенсивность Г. как непосредственно, так и через эндокринную систему. В частности, нервные влияния, стимулирующие секрецию тироксина, обеспечивают характерное для этого гормона повышение интенсивности окислительных процессов.


Диффузия газов крови (переход газов из альвеол в кровь, из крови в клетки тканей и обратно) осуществляется через мембраны и цитоплазму клеток по концентрационному градиенту — из мест с более высокой концентрацией в области более низкой концентрации. За счет этого процесса в альвеолах легких за доли секунды происходит выравнивание парциальных давлений различных газов в альвеолярном воздухе и крови.

Диффузия газов через альвеолярно-капиллярную перегородку начинается с диффузии через тонкий слой жидкости на поверхности клеток альвеолярного эпителия (рис.). Скорость диффузии в жидкости ниже скорости диффузии в воздухе, т. к. коэффициент диффузии обратно пропорционален вязкости среды. Скорость диффузии различных газов в жидкости зависит также от их растворимости (абсорбции) в данной жидкости. На поверхности жидкости напряжение газа такое же, как и в газовой среде, но в глубине жидкости оно ниже. Чем лучше растворимость газа, тем больше концентрационный градиент между поверхностными и глубинными слоями жидкости и тем выше скорость диффузии. Скорость диффузии определяется по формуле v=a/√M, , где v — скорость диффузии, а — коэффициент абсорбции, М — мол. вес газа. Величину относительной скорости диффузии двух различных газов определяют по отношению скоростей их диффузии: vCO2/vO2, в частности для углекислого газа и кислорода она составляет 20,7. Т. о., молекулы углекислого газа диффундируют в воде, межклеточной жидкости, плазме крови почти в 21 раз быстрее, чем молекулы кислорода.


За счет диффузии поддерживается непрерывный поток газов через тканевые перегородки. Величина его определяется законом Фика:

J = DS dp/dt,

где J — поток газа, D — коэффициент диффузии, S — площадь диффузии, dp/dt градиент парциального

давления газа. Поскольку диффузия газа в жидкости зависит от абсорбции газа в данной жидкости, в формулу вводят коэффициент абсорбции (a), a вместо градиента давления — разность давления по обе стороны перегородки (Р1 — Р2). Расчет проводят по упрощенной формуле:

J = (Da/760)S(P1-P2).

При разности парциальных давлений, равной 35 мм рт. ст., через альвеолярно-капиллярную перегородку легких может диффундировать св. 6 д кислорода в 1 мин. Углекислый газ вследствие более высокой скорости диффузии диффундирует примерно в таком же количестве при разности парциальных давлений, составляющей всего 6 мм рт. ст.

Дыхательная функция крови

Важную роль в Г. организма играет кровь, обеспечивающая связывание кислорода воздуха в капиллярах легких, доставку его тканям и выведение из организма образовавшейся в процессе обмена веществ углекислоты. Кроме этих газов, в крови находятся азот, аргон, гелий и др. Количество растворенного в крови газа (в мл или об. %) рассчитывают по формуле: a×p/760 где а — коэффициент растворимости газа, р — парциальное давление газа. Коэффициент растворимости характеризует количество газа, растворенного в


1 мл жидкости при данной температуре и давлении, равном 760 мм рт. ст. Для цельной крови при t° 38° коэффициент растворимости кислорода равен 0,022, углекислого газа 0,511, азота 0,011. Количество растворенного в крови азота невелико (ок. 1,2 об. %). Хотя физиол, значение азота не установлено, однако в нек-рых случаях, напр, при кессонной болезни (см. Декомпрессионная болезнь), необходимо учитывать изменения его концентрации.

В нормальных условиях в крови растворено слишком мало кислорода и углекислого газа, чтобы удовлетворить потребность организма в кислороде и обеспечить процесс удаления углекислоты. При pO2 в альвеолах легких, равном 100 мм рт. ст., в артериальной крови в растворенном виде содержится 0,30 об.%, а в смешанной венозной крови при падении pO2 до 37 мм рт. ст. содержится 0,11 об.% кислорода. Количество же растворенной углекислоты при прочих равных условиях больше: в артериальной крови содержится 2,6 об.% углекислоты (парциальное напряжение 40 мм рт. ст.), а в смешанной венозной крови 2,9 об.% (парциальное напряжение 45 мм рт. ст.). Эти величины составляют незначительную часть общего количества кислорода (19 об.% в артериальной крови и 12,1 об.% в венозной) и углекислоты (52 об.% в артериальной крови и 58 об.% в венозной), транспортируемых кровью.

Химическое связывание кислорода обеспечивается содержащимся в эритроцитах гемоглобином (см.).


единяясь с кислородом, гемоглобин превращается в легко диссоциирующий оксигемоглобин. Количество кислорода, к-рое может быть связано кровью после полного насыщения гемоглобина крови кислородом, называется кислородной емкостью крови. Величина кислородной емкости крови в норме у человека колеблется в пределах 16,0— 24,0 об.% при t° 0° и давлении 760 мм рт. ст.; она несколько выше у мужчин и ниже у женщин. В клинике определяют степень насыщения артериальной крови кислородом, представляющую собой процентное отношение содержания кислорода в крови (а) к ее кислородной емкости (А):a/A×100. При артериальной гипоксемии (пребывание в горах, отек легкого, пневмония) степень насыщения артериальной крови кислородом снижается (см. Гипоксия). Венозная гипоксемия отмечается при недостаточности кровообращения, когда при нормальном содержании кислорода и углекислоты в артериальной крови степень насыщения кислородом венозной крови понижена и в ней содержится большое количество углекислоты. Анемическая гипоксемия характеризуется низкой кислородной емкостью крови (до 5 об.%) при нормальной степени насыщения артериальной крови кислородом и пониженной величиной насыщения венозной крови. В этих случаях в силу низких величин кислородной емкости артерио-венозные различия будут незначительными. При исследованиях механизма возникновения различных форм анемий интерес представляет изучение так наз. транспортных свойств гемоглобина.

лная способность связывать кислород у всех четырех гемов молекулы гемоглобина одинакова, но эта способность изменяется не пропорционально изменению парциального давления, т. е. она различна при разных соотношениях гемоглобина и оксигемоглобина. После присоединения кислорода к первому из гемов сродство гемоглобина к кислороду возрастает и последующая оксигенация ускоряется. Для построения кривых связывания кислорода или кривых диссоциации оксигемоглобина пробы крови в специальных сатураторах насыщают газовыми смесями с возрастающими парциальными давлениями кислорода и определяют его количество в крови и газовой среде сатуратора или степень насыщения крови кислородом и pO2 в сатураторе. Степень насыщения крови кислородом (в %) или содержание кислорода (в об. %) откладывают по оси ординат, а по оси абсцисс — парциальное давление кислорода (имеются аппараты, записывающие эти кривые автоматически). При низком pO2 в крови содержится незначительное количество оксигемоглобина. Резкий подъем кривой отмечается в интервале давлений 20— 45 мм рт. ст.; в дальнейшем скорость реакции замедляется, и при pO2, составляющем 96 —100 мм рт. ст., достигается предел насыщения.

Скорость диссоциации оксигемоглобина на кислород и гемоглобин зависит не только от парциального давления кислорода, но и от других факторов. При увеличении напряжения углекислоты в крови сродство гемоглобина к кислороду уменьшается и диссоциация оксиге-моглобина облегчается. Аналогичное действие оказывает и изменение pH крови в кислую сторону — кривая диссоциации оксигемоглобина сдвигается вправо и вниз. Особенно четко выражено влияние pH в области низких парциальных давлений кислорода. Повышение температуры также сдвигает кривую диссоциации оксигемоглобина вправо. При понижении же температуры сродство гемоглобина к кислороду увеличивается, а отдача кислорода оксигемоглобином при средних и высоких значениях pO2 уменьшается.

Перенос углекислоты кровью тесно связан с транспортом кислорода гемоглобином и эритроцитами. В растворенной форме переносится лишь незначительное количество углекислоты, большая ее часть химически связывается в виде бикарбонатов плазмы и эритроцитов, а также с белками плазмы и гемоглобином. Углекислый газ в капиллярах тканей диффундирует в плазму крови, затем в эритроциты. Под влиянием фермента карбоангидразы углекислый газ превращается в угольную к-ту: CO2 + H2O <-> H2CO3 <-> H+ + HCO3. Угольная к-та в виде иона бикарбоната частично диффундирует обратно в плазму, замещаясь в соответствии с законом ионного равновесия Доннана (см. Мембранное равновесие) в эритроцитах ионами хлора. Оставшиеся в эритроцитах ионы HCO3-1 и вошедшие в эритроциты ионы хлора соединяются с ионами калия и гемоглобином. Кровь, обогатившаяся в эритроцитах KHCO3 и бикарбонатом натрия в плазме, поступает в легкие, где происходят те же процессы, однако в обратном направлении: ионы HCO3-1 в эритроцитах распадаются, а образующийся углекислый газ быстро диффундирует в плазму и оттуда в альвеолы. Освобождению CO2 способствуют превращения гемоглобина в оксигемоглобин. Последний, обладая более выраженными кислотными свойствами, способен переводить бикарбонаты в угольную к-ту, к-рая под действием карбоангидразы расщепляется с образованием CO2.

Сохранение разности концентрации ионов калия и натрия внутри и вне эритроцитов обеспечивается энергией, получаемой при расщеплении АТФ соответствующей АТФ-азой. В транспорте CO2 гемоглобин может участвовать и непосредственно — путем образования в капиллярах тканей карбогемоглобина (HbCO2). В легких (легочных капиллярах) вследствие понижения pCO2 до 40 мм рт. ст. карбогемоглобин диссоциирует на гемоглобин и свободный CO2; последний удаляется с выдыхаемым воздухом.

Принято считать, что примерно 80% всего количества угольной к-ты переносится от тканей к легким в виде бикарбонатов, 10—15% — в виде карбаминовых соединений, 6— 7% — в виде свободной растворенной углекислоты. Поскольку гемоглобин обладает буферными свойствами (см. Буферные системы), то транспорт углекислоты происходит практически без изменения pH крови.

Нарушения в окислительных процессах в тканях и гемодинамические расстройства могут вызвать отклонения в буферном действии гемоглобина и плазмы крови и привести к ацидозу (pH ниже 6,5) или алкалозу (увеличение pH до 8,0). При негазовом ацидозе (см.) содержание углекислоты в артериальной крови понижено вследствие того, что способность крови связывать углекислоту снижена и кривая связывания углекислоты сдвинута вправо и вниз (при заболеваниях почек, легких). При алкалозе (см.) повышается способность крови связывать углекислоту — кривая связывания сдвинута влево и вверх (при гипервентиляции, подъеме в гору, тетании).

Газообмен в пожилом и старческом возрасте

Характерной особенностью старения является снижение интенсивности тканевого дыхания, ведущее к уменьшению основного обмена и потребления кислорода, что связано с уменьшением числа активных клеточных элементов вследствие фиброзно-склеротических изменений, обезвоживания тканей, уменьшения количества субстратов окисления, снижения активности дыхательных ферментов и др. Парциальное давление кислорода в альвеолярном воздухе у пожилых и старых людей сохраняется на таком же уровне, как в молодом возрасте. Вместе с тем кислородное насыщение артериальной крови снижается, что приводит к увеличению альвеолярноартериального градиента кислорода. Утрата легочной тканью эластичности, появление ателектатических участков в легких вызывают затруднение легочной вентиляции. В свою очередь возрастные и атеросклеротические изменения сосудов малого круга кровообращения приводят к тому, что нарушение равномерности легочной вентиляции сопровождается дискоординацией вентиляции и кровотока. При старении понижается диффузионная способность легких, что обусловлено уменьшением поверхности диффузии из-за снижения количества альвеол и капилляров, функционально связанных друг с другом. Наблюдается тенденция к повышению содержания углекислоты в артериальной крови, что обусловлено анатомическим и функциональным шунтированием в легких. Увеличивается артерио-венозная разница по кислороду как следствие замедления кровотока и развития циркуляторной гипоксии.

У пожилых и старых людей при физ. нагрузке особенно отчетливо выявляется несовершенство систем, участвующих в обеспечении и регуляции Г. Компенсаторные сдвиги в Г. развиваются медленно, увеличивается кислородная «стоимость» работы, кислородный «долг», удлиняется восстановительный период.

Источник: xn--90aw5c.xn--c1avg

И ЭТО НЕОБХОДИМО
ДАМ ВСЕ БАЛЛЫ
1. Какие форменные элементы крови транспортируют кислород и углекислый газ?
1)тромбоциты 2)эритроциты
3)лейкоциты 4)лимфоциты
2. Чем по составу отличается выдыхаемый воздух от вдыхаемого?
1)большим содержанием азота, кислорода и углекислого газа
2)меньшим содержанием углекислого газа и кислорода
и большим — азота
3)меньшим содержанием азота и кислорода
4)меньшим содержанием кислорода, большим — углекислого газа и неизменным — азота
3. За счёт чего происходит газообмен в лёгких?
1)диффузия 2)активный транспорт
3)пассивный транспорт 4)осмос
4. Где начинается большой круг кровообращения?
1)правое предсердие 2)левое предсердие
3)левый желудочек 4)правый желудочек
5. . С помощью какого прибора определяют ЖЕЛ (жизненная ёмкость легких)?
4)спирометр
6. Какая наука изучает внутреннее строение организмов?
1)анатомия 2)физиология
3)генетика 4)цитология
7. Значение дыхания состоит в обеспечении организма
1) энергией
2) строительным материалом
3) запасными питательными веществами
4) витаминами
8. Если человек много курит, то у него
1) увеличивается количество биологически активных веществ в легочных пузырьках
2) легочные пузырьки слипаются из-за повреждения
выстилающей их изнутри пленки из биологически активных веществ
3) увеличивается способность гемоглобина присоеди­нять кислород
4) легочные пузырьки теряют эластичность и способ­ность очищаться
9. К освобождению энергии в организме приводит
1) образование органических соединений
2) диффузия веществ через мембраны клеток
3) окисление органических веществ в клетках тела
4) разложение оксигемоглобина до кислорода и гемо­глобина
10. Дым сигарет содержит более 200 вредных веществ,
в том числе угарный газ, который
1) уменьшает скорость движения крови
2) образует стойкое соединение с гемоглобином
3) повышает свертываемость крови
4) снижает способность организма вырабатывать анти­тела
11. Роль дыхания в жизни организмов состоит вырабатывать%
1)образовании и отложении органических веществ
2)поглощении из окружающей среды углекислого газа
3)освобождении энергии, необходимой для их жизнедеятельности
4)поглощении органических веществ из окружающей среды

12. Воздух в дыхательных путях согревается благодаря тому, что
1)их стенки выстланы ресничным эпителием
2)в их стенках расположены железы, выделяющие слизь
3)в их стенках разветвляются мелкие кровеносные сосуды
4)легочные пузырьки состоят из одного слоя клеток
13. При отравлении человека угарным газом
1)клетки тела получают меньше кислорода
2)уменьшается жизненная емкость легких
3)изменяется форма эритроцитов
4)замедляется процесс всасывания питательных веществ
14. Жизненная емкость легких у взрослого здорового человека колеблется от
1)1 до 2 л 2)6 до 7 л 3)3 до 5 л 4)7 до 8 л
15. Какая кровь у млекопитающих животных и человека течет в венах большого круга кровообращения?
1)насыщенная углекислым газом 2)насыщенная кислородом
3)артериальная 4)смешанная

Источник: biologia.neznaka.ru

Строение альвеол

Обмен газов в легких происходит в альвеолах.

Широкие трубки бронхов с хрящевой и мышечной основой разветвляются на бронхиолы, которые постепен­но теряют хрящ, но сохраняют мышечные элементы. Они переходят в альвеолярные ходы, образуя перед самым входом в альвеолу некоторое подобие сфинктера. Эта анатомическая особенность указывает на возможность регулирования притока воздуха к альвеолам. Альвеолярные ходы с многочисленными выпячиваниями их стенок, представляющими легочные альвеолы, являются конечными ка­налами. Число альвеол в легких исчисляется сотнями миллионов.

Стенки альвеол очень тонки (0,004 мм) и построены из основной мембраны и тонкого слоя эпителия. С внешней стороны к ним прилегает богатая сеть крове­носных капилляров (рис. 74). Следует отметить, что сосудистая сеть капилляров в альвеолах проявляет способность к самостоя­тельным сокращениям, которые происходят периодически под каки­ми-то нам не известными влияниями, создавая в альвеолах изменения кровотока. Состояние эпителия стенок альвеолы может отражаться на проницаемости клеточных мембран для кислорода и углекислоты.

Состав воздуха

Состав вдыхаемого воздуха

В атмосферном воздухе содержится 20,94% кислорода, 0,03% углекислого газа, 79,3% азота. Содержание других газов очень незначительно.

Состав выдыхаемого воздуха

В выдыхаемом воздухе содержание кислорода составляет 16,3 %, углекислого газа 4%, азота 79,7%. В составе выдыхаемого воздуха содержится 16,3% кислорода, 4% углекислого газа и 79,7% азота.

Состав альвеолярного воздуха

Обмен газов в легких возможен только при разнице напряже­ния газов (рис. 75). При вдохе воздух проходит не дальше мелких бронхов, так как дальше место занято запасным (альвеолярным) воздухом. Состав альвеолярного воздуха точно выяснен. Раньше его получали сложными методами с введением особого катетера в легкие. Теперь это делается проще, так как выяснено, что послед­ние порции воздуха при усиленном выдохе имеют состав альвео­лярного.

Разница в напряжении газов в альвеолярном и вдыхаемом воз­духе ведет к появлению тока кислорода в глубину легких и угле­кислоты ему навстречу. Поэтому выдыхаемый воздух имеет совсем иной состав:

Кислород в %

Углекислота в %

Атмосферный воздух

20,94

0,03

Выдыхаемый воздух

16,3

4

Альвеолярный воздух

14,5

5,5

Источник: wiki-med.com


Leave a Comment

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.