Респираторная система


Строение

Респираторная система человека состоит из верхних и нижних дыхательных путей. Символически их можно разделить в области трахеи. Верхняя часть состоит из носа и ротоглотки. К нижним относятся трахея, гортань, бронхи и легкие.

С носа начинается дыхательный процесс. Этот орган отвечает за согревание воздуха. Слизь помогает бороться с инфекционными заболеваниями, ежедневно ее вырабатывается 500 мл, а во время болезни количество увеличивается.

Глотка связывает носовую полость и гортань, выполняет функцию проведения воздуха. Трахея представляет собой трубку длиной до 12 см. Трахея по характеристикам схожа с бронхами и проводит воздух в легкие. Изнутри покрыта слизистой оболочкой, которая борется с инфекциями.

Бронхи состоят из 2 частей: левого и правого. Они требуются для проведения воздухообмена в легких. Бронхи делятся на трубки меньшего диаметра — бронхиолы, на конце которых находятся альвеолы.

Непосредственно в легких происходит газообмен. Поверхность органов выстлана оболочкой, которую называют плеврой.

Функции системы


Основная функция дыхательной респираторной системы — воздухо- и газообмен. Также органы дыхания отвечают за терморегуляцию, обоняние и голос. Организм непрерывно потребляет кислород, который требуется всем клеткам, и выделяет углекислый газ. Кислород требуется для окисления продуктов, которые образуются в результате расщепления белков, жиров и углеводов.

При понижении температуры окружающей среды дыхание человека учащается. Такое же происходит после приема белковой пищи и физических упражнений.

В течение суток через легкие проходит 19-20 тысяч литров воздуха, за год эта цифра увеличивается до 7 млн литров. Вентиляция легких происходит за счет чередования вдоха и выдоха.

Процесс дыхания

Органы респираторной системы человека не могут сокращаться. Вдох и выдох происходит за счет мышц: диафрагмы, косых межреберных и внутренних межхрящевых мышц. Диафрагма разграничивает брюшную и грудную полости. При спокойном дыхании она смещается на 2-3 см и увеличивает объем грудной клетки. Во время глубокого дыхания диафрагма сдвигается до 10 см.

При вдохе расширяется грудная клетка, и за счет этого увеличивается объем легких. Давление становится ниже атмосферного и воздух проникает в легкие. При прохождении через нос воздух согревается и увлажняется. При дыхании через нос воздух поступает более чистый, чем при дыхании через рот.

Воздух, попавший в гортань, проходит через нее, затем попадает в трахею и бронхи. Надгортанник предохраняет респираторную систему от попадания инородных тел и частичек пищи.

Из гортани воздух поступает в трахею и бронхи, которые состоят из хрящевых колец. Газообмен происходит непрерывно.

При выдохе мышцы грудной клетки давят на легкие, давление увеличивается, и воздух выходит наружу. При глубоком вдохе в процесс включаются мышцы живота.

Заболевания верхних дыхательных путей


Респираторный отдел дыхательной системы подвержен атаке бактерий и вирусов. Заболевания передаются воздушно-капельным путем. Болезни, которые возникают в верхних дыхательных путях:

  • ринит;
  • синусит;
  • ларингит;
  • ангина;
  • тонзиллит;
  • фарингит;
  • аденоидит.

При рините воспалительный процесс начинается в слизистой носа. Основными признаками является отечность и затруднение дыхания.

Характерные симптомы синусита — головные боли, повышение температуры тела и слизистые выделения из носа.

Аденоиды появляются вследствие разрастания носоглоточной миндалины. При этом затрудняется дыхание, снижается слух, нарушается сон и возникают слизистые выделения из носа.

При тонзиллите воспаляются миндалины, болезнь вызывается, как правило, бактериальной инфекцией.

Фарингит характеризуется воспалением глотки. Повышением температуры не сопровождается.

При ларингите воспаление распространяется на гортань.

Заболевания нижних дыхательных путей

Заболевания респираторной системы нижних дыхательных путей называются:

  • трахеит;
  • бронхит;
  • пневмония;
  • альвеолит.

При трахеите воспаляется слизистая оболочка трахеи. Появляется головная боль, слабость, сухой кашель, повышается температура. Боль в груди усиливается при разговоре и вдыхании холодного воздуха. Если инфекция задевает голосовые связки, то становится сиплым голос, человеку тяжело разговаривать.

При бронхите воспаляются слизистые оболочки бронхов. Основным симптомом будет кашель. Если присоединяется бактериальная инфекция, то может появиться обструкция. В этом случае требуется прием антибиотиков.

Если воспаление достигает легких, развивается пневмония. Заболевание требует своевременного лечения, так как является опасным. Повышается температура, возникает озноб, слабость, боль в груди при кашле и дыхании. Врач слышит хрипы на пораженном участке легкого. Для подтверждения диагноза проводят рентген грудной клетки. При лечении используют антибактериальные препараты.

Регуляция дыхания

Организму необходимо поддерживать уровень кислорода. При нарушении этого показателя человек умирает через несколько минут. Пневмония и бронхит являются опасными заболеваниями, в особенности у детей. Обструкция приводит к дефициту кислорода, что может спровоцировать нарушение мозгового кровообращения.

Рецепторы, которые расположены в стенках сосудов, тонко реагируют на изменение уровня кислорода в крови. При этом изменяется частота, глубина и ритм дыхания.

Всей системой управляет нервная система, состоящая из нейронов.

Различают три уровня дыхательной системы:


  1. Спинальный дыхательный центр находится в спинном мозге. Благодаря этому перемещается диаграмма и мышцы, при сокращении которых происходит дыхание.
  2. Центральный дыхательный механизм получает сигналы из продолговатого мозга. Дыхание во время сна регулируется варолиевым мостом.
  3. Центр регуляции дыхания располагается в коре больших полушарий и гипоталамусе. данная функция позволяет регулировать дыхание, менять частоту, глубину, ритм и производить задержку дыхания.

При отклонении от нормы изменения происходят со стороны других органов и систем организма. Изменяется частота сердечных сокращений и снижается артериальное давление.

Нарушения деятельности

Учащенное дыхание является первым признаком инфекции, которая поселилась в респираторной системе. У новорожденных иногда возникает задержка дыхания, которая проходит спустя несколько секунд. Это не является нормой, но опасности для ребенка не несет. Тем не менее следует обратиться к врачу, чтобы выяснить причину этого явления.

Дыхательная недостаточность — нарушение в работе системы, при котором газообмен обмен в крови дает сбой. Кардио-респираторная система доставляет питание к каждой клетке организма. Кислородное голодание возникает при избытке углекислого газа в тканях человека. Это может произойти в результате черепно-мозговой травмы или сбоя в работе нервной системы.

Основные симптомы кислородного голодания:

  • замедленное дыхание;
  • синюшность лица или носогубного треугольника;
  • слабый пульс;
  • остановка дыхание;
  • слабость или отсутствие дыхательных движений.

Факторы, влияющие на органы дыхания

В нормальных условиях дыхательная система не дает сбоя, но при определенных факторах иммунитет не справляется в нагрузкой, что приводит к заболеваниям. Факторы, которые влияют на органы дыхания:

  • низкая температура окружающей среды;
  • сухой воздух;
  • аллергены;
  • курение;
  • экологическая обстановка.

Для профилактики заболеваний респираторной системы следует проводить мероприятия:

  • регулярно проветривать помещение;
  • избегать мест массового скопления;
  • проводить закаливающие мероприятия;
  • ежедневно гулять;
  • своевременно обращаться к врачу при первых признаках заболевания.

Итак, сегодня мы рассмотрели, что такое респираторная система.

Источник: FB.ru

Органы дыхательной системы человека условно делятся на дыхательные пути, или проводники, по которым воздушная смесь поступает к легким, и легочную ткань, или альвеолы.

Дыхательные пути по уровню прикрепления пищевода условно делятся на верхние и нижние. К верхним относятся:

  • нос и его придаточные пазухи
  • ротоглотка
  • гортань

К нижним дыхательным путям относятся:

  • трахея
  • главные бронхи
  • бронхи следующих порядков
  • терминальные бронхиолы.

Носовая полость — первый рубеж при поступлении воздуха в организм. На пути пылевых частиц встают многочисленные волоски, расположенные на слизистой полости носа, и очищают проходящий воздух. Носовые раковины представлены хорошо кровоснабжаемой слизистой и, проходя сквозь извитые носовые раковины, воздух не только очищается, но и согревается.

Также нос – орган, благодаря которому мы наслаждаемся ароматом свежей выпечки, или точно можем определить местонахождение общественного туалета. А все потому, что на слизистой верхней носовой раковины расположены чувствительные обонятельные рецепторы. Их количество и чувствительность генетически запрограммированы, благодаря чему парфюмеры создают запоминающиеся ароматы духов.

Проходя сквозь ротоглотку, воздух попадает в гортань. Как же получается, что пища и воздух проходят через одни и те же части тела и не смешиваются? При глотании надгортанник прикрывает дыхательные пути, и пища попадает в пищевод. При повреждении надгортанника человек может поперхнуться. Попадание еды в дыхательные пути требует немедленной помощи и может даже привести к смерти.


Гортань состоит из хрящей и связок. Хрящи гортани видны невооруженным глазом. Самый крупный из хрящей гортани — щитовидный хрящ. Его строение зависит от половых гормонов и у мужчин он сильно выдвигается вперед, формируя адамово яблоко, или кадык. Именно хрящи гортани служат ориентиром для врачей при проведении трахеотомии или коникотомии – операций, которые проводятся, когда инородное тело или опухоль перекрывают просвет дыхательных путей, и обычным способом человек не может дышать.

Дальше на пути воздуха встают голосовые связки. Именно проходя через голосовую щель и заставляя дрожать натянутые голосовые связки, человеку доступна не только функция речи, но и пение. Некоторые уникальные певцы могут заставить дрожать связки с частотой 1000 децибел и силой своего голоса взрывать хрустальные стаканы
(в России самым широким диапазоном голоса в пять октав обладает Светлана Феодулова — участница шоу «Голос–2»).

Через гортань и голосовые связки воздух поступает в трахею. Трахея анатомически делится на шейную и грудную части. Анатомическим ориентиром является яремная вырезка грудины.


Трахея имеет строение хрящевых полуколец. Передняя хрящевая часть обеспечивает беспрепятственное прохождение воздуха за счет того, что трахея не спадается. Сзади к трахее прилегает пищевод, и мягкая часть трахеи не задерживает прохождение пищи по пищеводу.

Дальше воздух по бронхам и бронхиолам, выстланным мерцательным эпителием, добирается до конечного отдела легких — альвеол. Легочная ткань, или альвеолы – конечные, или терминальные отделы трахеобронхиального дерева, похожие на слепо заканчивающиеся мешочки.

Множество альвеол формируют легкие. Легкие — парный орган. Природа позаботилась о своих нерадивых детях, и некоторые важные органы – легкие и почки – создала в двойном экземпляре. Человек может жить и с одним легким. Легкие расположены под надежной защитой каркаса из прочных ребер, грудины и позвоночника.

Функции дыхательной системы

Интересно, что легкие лишены мышечной ткани и сами дышать не могут. Дыхательные движения обеспечивает работа мышц диафрагмы и межреберных мышц.

Человек совершает дыхательные движения благодаря сложному взаимодействию различных групп мышц межреберных, мышц брюшного пресса при глубоком дыхании, а самая мощная мышца, участвующая в дыхании, – диафрагма.


Наглядно представить работу дыхательных мышц поможет опыт с моделью Дондерса, описанный на странице 177 учебника «Биология 9 класс» под редакцией Пономаревой И.Н.

Легкие и грудная клетка выстланы плеврой. Плевра, которая выстилает легкие, называется легочной, или висцеральной. А та, которая покрывает ребра, – пристеночной, или париетальной. Строение дыхательной системы обеспечивает необходимый газообмен.

При вдохе мышцы растягивают легочную ткань, как умелый музыкант меха у баяна, и воздушная смесь атмосферного воздуха, состоящая из 21% кислорода, 79% азота и 0.03% углекислого газа поступает по дыхательным путям к конечному отделу, где оплетенные тонкой сетью капилляров альвеолы готовы принять кислород и отдать отработанный углекислый газ из человеческого тела. Состав выдыхаемого воздуха отличается значительно бо´льшим содержанием углекислого газа – 4%.

Чтобы представить масштаб газообмена, только подумайте, что площадь всех альвеол человеческого организма примерно равна волейбольной площадке.

Чтобы альвеолы не слипались, их поверхность выстлана сурфактантом — специальной смазкой, содержащей липидные комплексы.

Терминальные отделы легких густо оплетены капиллярами и стенка кровеносных сосудов тесно соприкасается со стенкой альвеол, что позволяет содержащемуся в альвеолах кислороду по разнице концентраций, без участия переносчиков, путем пассивной диффузии поступать в кровь.


Если вспомнить основы химии, а конкретно – тему растворимость газов в жидкостях, особо дотошные могут сказать: «Ерунда какая, ведь растворимость газов с повышением температуры уменьшается, а тут вы рассказываете, что кислород отлично растворяется в теплой, почти горячей — примерно 38-39°С, соленой жидкости».
И они правы, но забывают, что эритроцит содержит гемоглобин-захватчик, одна молекула которого может присоединить 8 атомов кислорода и транспортировать их к тканям!

В капиллярах кислород связывается с белком-переносчиком на эритроцитах и по легочным венам к сердцу возвращается насыщенная кислородом артериальная кровь.
Кислород участвует в процессах окисления, а клетка в результате получает необходимую для жизнедеятельности энергию.

Дыхание и газообмен – самые важные функции дыхательной системы, но далеко не единственные. Дыхательная система обеспечивает поддержание теплового баланса за счет испарения воды при дыхании. Внимательный наблюдатель замечал, что в жаркую погоду человек начинает чаще дышать. У людей, правда, этот механизм работает не так эффективно, как у некоторых животных, например у собак.

Гормональную функцию через синтез важных нейромедиаторов (серотонина, дофамина, адреналина) обеспечивают лёгочные нейроэндокринные клетки (PNE-pulmonary neuroendocrine cells). Также в легких синтезируются арахидоновая кислота и пептиды.

Регуляция

Казалось бы, что тут сложного. Содержание кислорода в крови снизилось, и вот она – команда для вдоха. Однако на самом деле механизм значительно сложнее. Ученые до сих пор не разгадали механизм, благодаря которому человек дышит. Исследователи лишь выдвигают гипотезы, и только некоторые из них доказываются сложными экспериментами. Точно установлено лишь то, что истинного водителя ритма в дыхательном центре, подобного водителю ритма в сердце, нет.

В стволе мозга расположен дыхательный центр, который состоит из нескольких разрозненных групп нейронов. Выделяют три основных группы нейронов:

  • дорсальная группа — основной источник импульсов, которые обеспечивают постоянный ритм дыхания;
  • вентральная группа — контролирует уровень вентиляции легких и может стимулировать вдох или выдох в зависимости от момента возбуждения.Именно эта группа нейронов управляет мышцами брюшного пресса и живота для глубокого дыхания;
  • пневмотаксический центр — благодаря его работе происходит плавная смена выдоха вдохом.

Для полноценного обеспечения организма кислородом нервная система регулирует скорость вентиляции легких через изменение ритма и глубины дыхания. Благодаря отлаженной регуляции даже активные физические нагрузки практически не влияют на концентрацию кислорода и углекислого газа в артериальной крови.

В регуляции дыхания участвуют:

  • хеморецепторы каротидного синуса, чутко реагирующие на содержание газов О2 и СО2 в крови. Рецепторы расположены во внутренней сонной артерии на уровне верхнего края щитовидного хряща;
  • рецепторы растяжения легких, расположенные в гладких мышцах бронхов и бронхиол;
  • инспираторные нейроны, расположенные в продолговатом мозге и варолиевом мосту (делятся на ранние и поздние).

Сигналы с различных групп рецепторов, расположенных в дыхательных путях, передаются в дыхательный центр продолговатого мозга, где в зависимости от интенсивности и продолжительности формируется импульс к дыхательному движению.

Физиологи предположили, что отдельные нейроны объединяются в нейронные сети для регуляции последовательности смены фаз вдоха-выдоха, регистрации отдельными типами нейронов своего потока информации и изменения ритма и глубины дыхания в соответствии с этим потоком.

Расположенный в продолговатом мозге дыхательный центр контролирует уровень напряжения газов крови и регулирует вентиляцию легких с помощью дыхательных движений, чтобы концентрация кислорода и углекислого газа была оптимальной. Регуляция осуществляется при помощи механизма обратной связи.

О регуляции дыхания с помощью защитных механизмов кашля и чихания можно почитать на странице 178 учебника «Биология 9 класс» под редакцией Пономаревой И.Н.

Источник: rosuchebnik.ru

Строение

Дыхательные пути

Различают верхние и нижние дыхательные пути. Символический переход верхних дыхательных путей в нижние осуществляется в месте пересечения пищеварительной и дыхательной систем в верхней части гортани.

Система верхних дыхательных путей состоит из полости носа (лат. cavum nasi), носоглотки (лат. pars nasalis pharyngis) и ротоглотки (лат. pars oralis pharyngis), а также частично ротовой полости, так как она тоже может быть использована для дыхания. Система нижних дыхательных путей состоит из гортани (лат. larynx, иногда её относят к верхним дыхательным путям), трахеи (др.-греч. τραχεῖα (ἀρτηρία)), бронхов (лат. bronchi).

Вдох и выдох осуществляется путём изменения размеров грудной клетки с помощью дыхательных мышц. В течение одного вдоха (в спокойном состоянии) в лёгкие поступает 400—500 мл воздуха. Этот объём воздуха называется дыхательным объёмом (ДО). Такое же количество воздуха поступает из лёгких в атмосферу в течение спокойного выдоха. Максимально глубокий вдох составляет около 2 000 мл воздуха. Максимальный выдох также составляет около 2 000 мл. После максимального выдоха в лёгких остаётся воздух в количестве около 1 500 мл, называемый остаточным объёмом лёгких. После спокойного выдоха в лёгких остаётся примерно 3 000 мл. Этот объём воздуха называется функциональной остаточной ёмкостью (ФОЁ) лёгких. Дыхание — одна из немногих функций организма, которая может контролироваться сознательно и неосознанно. Виды дыхания: глубокое и поверхностное, частое и редкое, верхнее, среднее (грудное) и нижнее (брюшное). Особые виды дыхательных движений наблюдаются при икоте и смехе. При частом и поверхностном дыхании возбудимость нервных центров повышается, а при глубоком — наоборот, снижается.

Дыхательные органы

Дыхательные пути обеспечивают связь окружающей среды с главными органами дыхательной системы — лёгкими. Лёгкие (лат. pulmo, др.-греч. πνεύμων) расположены в грудной полости в окружении костей и мышц грудной клетки. В лёгких осуществляется газообмен между атмосферным воздухом, достигшим лёгочных альвеол (паренхимы лёгких), и кровью, протекающей по лёгочным капиллярам, которые обеспечивают поступление кислорода в организм и удаление из него газообразных продуктов жизнедеятельности, в том числе — углекислого газа. Благодаря функциональной остаточной ёмкости (ФОЁ) лёгких в альвеолярном воздухе поддерживается относительно постоянное соотношение содержания кислорода и углекислого газа, так как ФОЁ в несколько раз больше дыхательного объёма (ДО). Только 2/3 ДО достигает альвеол, который называется объёмом альвеолярной вентиляции. Без внешнего дыхания человеческий организм обычно может прожить до 5-7 минут (так называемая клиническая смерть), после чего наступают потеря сознания, необратимые изменения в мозге и его смерть (биологическая смерть). Восстановление функции внешнего дыхания и кровообращения после наступления биологической смерти ведёт к эффекту зомбирования, когда восстанавливается жизнедеятельность практически всех органов и тканей организма, кроме коры головного мозга.

Функции дыхательной системы

Основные функции — дыхание, газообмен.

Кроме того, дыхательная система участвует в таких важных функциях, как терморегуляция, голосообразование, обоняние, увлажнение вдыхаемого воздуха. Лёгочная ткань также играет важную роль в таких процессах как: синтез гормонов, водно-солевой и липидный обмен. В обильно развитой сосудистой системе лёгких происходит депонирование крови. Дыхательная система также обеспечивает механическую и иммунную защиту от факторов внешней среды.

Дыхательная недостаточность

Дыха́тельная недоста́точность (ДН) — патологическое состояние, характеризующееся одним из двух типов нарушений:

  • система внешнего дыхания не может обеспечить нормальный газовый состав крови,
  • нормальный газовый состав крови обеспечивается за счёт повышенной работы системы внешнего дыхания.

Асфиксия

Асфи́кси́я (от др.-греч. ἀ- — «без» и σφύξις — пульс, буквально — отсутствие пульса, в русском языке допускается ударение на второй или третий слог) — удушье, обусловленное кислородным голоданием и избытком углекислоты в крови и тканях, например при сдавливании дыхательных путей извне (удушение), закрытии их просвета отёком, падении давления в искусственной атмосфере (либо системе обеспечения дыхания) и так далее. В литературе механическую асфиксию определяют как: «кислородное голодание, развившееся в результате физических воздействий, препятствующих дыханию, и сопровождающееся острым расстройством функций центральной нервной системы и кровообращения…» или как «нарушение внешнего дыхания, вызванное механическими причинами, приводящее к затруднению или полному прекращению поступления в организм кислорода и накоплению в нем углекислоты». Первая помощь при асфиксии заключается в восстановлении функции внешнего дыхания: традиционно используют принудительное вдувание воздуха в лёгкие больного. Этот метод, названный «рот в рот» и «рот в нос» используется повсеместно в качестве немедленной помощи до приезда врача.[2]

См. также

  • Нормальная анатомия человека

Литература

  • Самусев Р. П. Атлас анатомии человека / Р. П. Самусев, В. Я. Липченко. — М., 2002. — 704 с.: ил.
  • Дыхательная система // Малая медицинская энциклопедия (том 10+, стр. 209).

Источник: dik.academic.ru

Дыхательная система человека: общие сведения

Дыхательная, или респираторная, система представляет собой комплекс органов, благодаря которым осуществляется доставка кислорода из окружающей среды в кровеносную систему и последующее выведение отработанных газов обратно в атмосферу. Помимо этого, она задействована в теплообмене, обонянии, формировании голосовых звуков, синтезе гормональных веществ и метаболических процессах. Однако наибольший интерес представляет именно газообмен, поскольку является наиболее значимым для поддержания жизнедеятельности.

При малейшей патологии дыхательной системы функциональность газообмена снижается, что может приводить к активации компенсаторных механизмов либо кислородному голоданию. Для оценки функций органов дыхания принято использовать следующие понятия:

  • Жизненная ёмкость лёгких, или ЖЕЛ,— максимально возможный объём атмосферного воздуха, поступившего за один вдох. У взрослых он варьируется в пределах 3,5‒7 литров в зависимости от степени натренированности и уровня физического развития.
  • Дыхательный объём, или ДО, — показатель, характеризующий среднестатистическое поступление воздуха за один вдох в спокойных и комфортных условиях. Норма для взрослых составляет 500‒600 мл.
  • Резервный объём вдоха, или РОВд, — предельное количество атмосферного воздуха, поступившего в спокойных условиях за один вдох; составляет порядка 1,5‒2,5 литра.
  • Резервный объём выдоха, или РОВыд,— предельный объём воздуха, который покидает организм в момент спокойного выдоха; нормой является примерно 1,0‒1,5 литра.
  • Частота дыхания — количество дыхательных циклов (вдох-выдох), совершённых в минуту. Норма зависит от возраста и степени нагрузки.
дыхательная система

Каждый из этих показателей имеет определённое значение в пульмонологии, поскольку любое отклонение от нормальных цифр свидетельствует о наличии патологии, требующей соответствующего лечения.

Строение и функция дыхательной системы

Дыхательная система обеспечивает организм достаточным поступлением кислорода, участвует в газообмене и выведении токсических соединений (в частности углекислоты). Поступая по воздухоносным путям, воздух согревается, частично очищается, а затем транспортируется непосредственно в лёгкие — главный орган человека в дыхании. Здесь и происходят основные процессы газообмена между тканями альвеол и кровеносными капиллярами.

Эритроциты, содержащиеся в крови, включают гемоглобин — сложный белок на основе железа, который способен присоединять к себе молекулы кислорода и соединения углекислоты. Поступая в капилляры лёгочной ткани, кровь насыщается кислородом, захватывая его при помощи гемоглобина. Затем эритроциты разносят кислород в остальные органы и ткани. Там поступивший кислород постепенно высвобождается, а его место занимает углекислый газ — конечный продукт дыхания, который при высоких концентрациях может вызывать отравление и интоксикацию вплоть до летального исхода. После этого эритроциты, лишённые кислорода, отправляются обратно в лёгкие, где осуществляется удаление углекислоты и повторное насыщение крови кислородом. Таким образом замыкается цикл дыхательной системы человека.

Регуляция процесса дыхания

Соотношение концентрации кислорода и углекислоты является более-менее постоянной величиной и регулируется на бессознательном уровне. В спокойных условиях поступление кислорода осуществляется в оптимальном для конкретного возраста и организма режиме, однако при нагрузках — во время физических тренировок, при внезапном сильном стрессе — уровень углекислоты повышается. В этом случае нервная система посылает сигнал в дыхательный центр, который стимулирует механизмы вдоха и выдоха, повышая уровень поступления кислорода и компенсируя переизбыток углекислого газа. Если этот процесс по каким-то причинам прерывается, недостаток кислорода быстро приводит к дезориентации, головокружению, потере сознания, а затем к необратимым мозговым нарушениям и клинической смерти. Именно поэтому работа дыхательной системы в организме считается одной из главенствующих.

дыхательная система

Каждый вдох осуществляется за счёт определённой группы дыхательных мышц, которые координируют движения лёгочной ткани, поскольку сама она является пассивной и изменять форму не может. В стандартных условиях этот процесс обеспечивается благодаря диафрагме и межрёберным мышцам, однако при глубоком функциональном дыхании задействуется ещё мышечный каркас шейного, грудного отдела и брюшной пресс. Как правило, во время каждого вдоха у взрослого человека диафрагма опускается на 3‒4 см, что позволяет увеличить суммарный объём грудной клетки на 1‒1,2 литра. В это же время межрёберные мышцы, сокращаясь, приподнимают рёберные дуги, что ещё больше увеличивает итоговый объём лёгких и, соответственно, понижает давление в альвеолах. Именно из-за разницы давлений в лёгкие нагнетается воздух, и происходит вдох.

Выдох, в отличие от вдоха, не требует работы мышечной системы. Расслабляясь, мышцы вновь сжимают объём лёгких, и воздух как бы «выдавливается» из альвеол обратно через воздухоносные пути. Происходят эти процессы довольно быстро: новорождённые дышат в среднем 1 раз в секунду, взрослые – 16‒18 раз в минуту. В норме этого времени хватает для качественного газообмена и выведения углекислоты.

Органы дыхательной системы человека

Систему дыхания человека условно можно подразделить на дыхательные пути (транспортировка поступившего кислорода) и основной парный орган — лёгкие (газообмен). Дыхательные пути в месте пересечения с пищеводом классифицируются на верхние и нижние. К верхним относятся отверстия и полости, через которые воздух поступает в организм: нос, рот, носовая, ротовая полости и глотка. К нижним — пути, по которым воздушные массы переходят непосредственно в лёгкие, то есть гортань и трахея. Давайте рассмотрим, какую функцию выполняет каждый из этих органов.

Верхние дыхательные пути

1. Полость носа

Носовая полость является связующим звеном между окружающей средой и дыхательной системой человека. Через ноздри воздух поступает в носовые ходы, выстланные мелкими ворсинками, которые отфильтровывают пылевые частички. Внутренняя поверхность полости носа отличается богатой сосудисто-капиллярной сеткой и большим количеством слизистых желёз. Слизь выступает своего рода барьером для патогенных микроорганизмов, препятствуя их быстрому размножению и уничтожая микробную флору.

носовая полость

Сама носовая полость разделяется решётчатой косточкой на 2 половины, каждая из которых, в свою очередь, разделяется ещё на несколько ходов посредством костных пластинок. Сюда открываются придаточные пазухи — гайморова, лобная и другие. Они также относятся к системе дыхания, поскольку значительно увеличивают функциональный объём носовой полости и содержат хоть и небольшое, но всё же довольно значимое количество слизистых желёз.

Слизистая носовой полости образована мерцательными эпителиальными клетками, которые выполняют защитную функцию. Попеременно двигаясь, клеточные реснички образуют своеобразные волны, которые поддерживают чистоту носовых ходов, удаляя вредные вещества и частички. Слизистые оболочки могут значительно изменяться в объёмах в зависимости от общего состояния организма. В норме просветы многочисленных капилляров довольно узкие, поэтому ничто не препятствует полноценному носовому дыханию. Однако при малейшем воспалительном процессе, например во время простудного заболевания или гриппа, синтез слизи увеличивается в несколько раз, а объём кровеносной сетки возрастает, что приводит к отёку и затруднённому дыханию. Таким образом возникает насморк — ещё один механизм, защищающий дыхательные пути от дальнейшего инфицирования.

К основным функциям носовой полости можно отнести:

  • фильтрация от пылевых частиц и патогенной микрофлоры,
  • согревание поступающего воздуха,
  • увлажнение воздушных потоков, что особенно важно в условиях засушливого климата и в отопительный период,
  • защита дыхательной системы во время простудных заболеваний.

2. Полость рта

Ротовая полость является вторичным дыхательным отверстием и не настолько анатомически продумана для снабжения организма кислородом. Впрочем, она с лёгкостью может выполнять эту функцию, если носовое дыхание по каким-либо причинам затруднено, например при травме носа или насморке. Путь, который проходит воздух, поступая через ротовую полость, значительно короче, а само отверстие больше по диаметру по сравнению с ноздрями, поэтому резервный объём вдоха через рот, как правило, больше, чем через нос. Правда, на этом преимущества ротового дыхания заканчиваются. На слизистой оболочке рта нет ни ресничек, ни слизистых желёз, вырабатывающих слизь, а значит, фильтрационная функция в этом случае полностью теряет своё значение. Кроме того, короткий путь воздушных потоков облегчает поступление воздуха в лёгкие, поэтому он просто не успевает нагреться до комфортной температуры. Из-за этих особенностей носовое дыхание является более предпочтительным, а ротовое предназначено для исключительных случаев или в качестве компенсаторных механизмов при невозможности поступления воздуха через нос.

глотка

3. Глотка

Глотка является соединительным участком между носовой и ротовой полостями и гортанью. Она условно разделена на 3 части: носо-, рото- и гортаноглотку. Каждая из этих частей поочерёдно задействована в транспортировке воздуха при носовом дыхании, постепенно доводя его до комфортной температуры. Попадая в гортаноглотку, вдыхаемый воздух перенаправляется в гортань посредством надгортанника, который выступает своеобразным клапаном между пищеводом и органами дыхания. Во время дыхания надгортанник, примыкающий к щитовидному хрящу, перекрывает пищевод, обеспечивая поступление воздуха только в лёгкие, а во время глотания, наоборот, блокирует гортань, защищая от попадания инородных тел в органы дыхания и последующего удушья.

Нижние дыхательные пути

1. Гортань

Гортань располагается в переднем шейном отделе и представляет собой верхнюю часть дыхательной трубки. Анатомически она состоит из хрящевых колец — щитовидного, перстневидного и двух черпаловидных. Щитовидный хрящ образует кадык, или адамово яблоко, особенно выраженное у представителей сильного пола. Между собой гортанные хрящи соединены при помощи соединительной ткани, что, с одной стороны, обеспечивает необходимую подвижность, а с другой, ограничивает подвижность гортани в строго определённом диапазоне. В этой области также расположен голосовой аппарат, представленный голосовыми связками и мышцами. Благодаря их скоординированной работе у человека формируются волнообразные звуки, которые затем трансформируются в речь. Внутренняя поверхность гортани выстлана мерцательными эпителиальными клетками, а голосовые связки — плоским эпителием, лишённым слизистых желёз. Поэтому основное увлажнение связочного аппарата обеспечивается благодаря оттоку слизи их вышележащих органов дыхательной системы.

2. Трахея

Трахея представляет собой трубку длиной 11‒13 см, армированную спереди плотными гиалиновыми полукольцами. Задняя стенка трахеи примыкает к пищеводу, поэтому там хрящевая ткань отсутствует. В противном случае это затрудняло бы прохождение пищи. Основной функцией трахеи является прохождение воздуха по шейному отделу дальше в бронхи. Кроме того, ресничный эпителий, выстилающий внутреннюю поверхность дыхательной трубки, производит слизь, которая обеспечивает дополнительную фильтрацию воздуха от пылевых частиц и других загрязняющих компонентов.

альвеолы

Лёгкие

Лёгкие являются основным органом, осуществляющим воздухообмен. Неодинаковые по размеру и форме парные образования расположены в грудной полости, ограниченной рёберными дугами и диафрагмой. Снаружи каждое лёгкое покрыто серозной плеврой, которая состоит из двух слоёв и образует герметичную полость. Внутри она заполнена небольшим количеством серозной жидкости, которая играет роль амортизатора и значительно облегчает дыхательные движения. Между правым и левым лёгким расположено средостение. В этом относительно небольшом пространстве соседствуют трахея, грудной лимфопроток, пищевод, сердце и отходящие от него крупные сосуды.

В каждое лёгкое входят бронхиально-сосудистые пучки, образованные первичными бронхами, нервами и артериями. Именно здесь начинается разветвление бронхиального дерева, вокруг ветвей которого располагаются многочисленные лимфатические узлы и сосуды. Выход кровеносных сосудов из лёгочной ткани осуществляется через 2 вены, отходящие от каждого лёгкого. Попадая в лёгкие, бронхи начинают ветвиться в зависимости от количества долей: в правом – три бронхиальные ветви, а в левом – две. С каждым ответвлением их просвет постепенно сужается вплоть до половины миллиметра у самых маленьких бронхиол, коих у взрослого человека насчитывается порядка 25 миллионов.

Однако на бронхиолах путь воздуха не завершается: отсюда он попадает в ещё более узкие и ветвистые альвеолярные ходы, которые и приводят воздух к альвеолам — так называемому «пункту назначения». Именно здесь происходят процессы газообмена через соприкасающиеся стенки лёгочных мешочков и капиллярной сетки. Эпителиальные стенки, выстилающие внутреннюю поверхность альвеол, вырабатывают поверхностно-активный сурфактант, который препятствует их спаданию. До рождения ребёнок, находящийся в утробе матери, получает кислород не через лёгкие, поэтому альвеолы находятся в спавшемся состоянии, однако во время первого вдоха и крика они расправляются. Это зависит от полноценного формирования сурфактанта, который в норме появляется у плода на седьмой месяц внутриутробной жизни. В таком состоянии альвеолы остаются на протяжении всей жизни. Даже при самом интенсивном выдохе часть кислорода непременно остаётся внутри, поэтому лёгкие не спадаются.

Заключение

Анатомически и физиологически дыхательная система человека представляет собой слаженный механизм, благодаря которому поддерживается жизнедеятельность организма. Обеспечение каждой клетки человеческого тела важнейшим веществом — кислородом — служит основой жизни, самым значимым процессом, без которого не обходится ни один человек. Регулярное вдыхание загрязнённого воздуха, низкий уровень экологии, смог и пыль городских улиц негативным образом сказываются на функциях органов дыхания, не говоря уже о курении, которое ежегодно убивает миллионы людей по всему миру. Поэтому, тщательно отслеживая состояние здоровья, необходимо позаботиться не только о собственном организме, но и об экологии, чтобы через несколько лет глоток чистого, свежего воздуха был не пределом мечтаний, а повседневной нормой жизни!

Респираторная система

Источник: www.oum.ru

Респираторная система[править | править код]

Респираторная, или дыхательная система, — первый этап в цепи доставки кислорода. Задача респираторной системы, с точки зрения энергетики, — насыщение крови кислородом и выведение углекислого газа из организма. Теоретически эффективность процессов газообмена зависит от величины альвеолярной вентиляции и диффузионной способности легких и определяется соотношением альвеолярная вентиляция/перфузия. Если показатель альвеолярная вентиляция/перфузия начинает падать, то это неизбежно приводит к снижению сатурации кислородом артериальной крови, т.е. к снижению общего количества кислорода, доставляемого к тканям. Значительное снижение (более 5%) сатурации кислородом артериальной крови получило название артериальной гипоксемии.

Альвеолярная вентиляция зависит от глубины и частоты дыхания, т.е. от легочной вентиляции и объема мертвого пространства. Способность поддерживать заданный уровень легочной вентиляции (глубину и частоту дыхания) определяется жизненной емкостью легких, сопротивлением дыхательных путей, силой дыхательных мышц и их аэробными возможностями. Для тестирования силы дыхательных мышц, как правило, определяют максимальное давление в загубнике, создаваемое при изометрическом напряжении дыхательных мышц, или определяют максимальную скорость (давление) вдоха/выдоха. Интегральным критерием, характеризующим максимальную производительность дыхательной системы, является максимальная произвольная легочная вентиляция.

Диффузионная способность легких при данном градиенте давления газа между альвеолой и капилляром зависит от суммарной площади газообмена — площади открытых альвеол и от пропускной способности альвеолярной мембраны. С другой стороны, суммарная площадь газообмена зависит и от суммарной поверхности эритроцитов, находящихся в зоне газообмена, и от времени пребывания эритроцитов в этой зоне, т.е. от скорости кровотока в легочном капилляре.

Хорошо известно, что у спортсменов, тренирующих выносливость, по сравнению с нетренированными людьми увеличены показатели жизненной емкости легких, максимальной частоты дыхания, максимальной произвольной вентиляции легких и диффузионной способности легких. Однако у тренированных людей не обнаружено значимых связей между аэробной работоспособностью и параметрами, характеризующими производительность респираторной системы. Это наталкивает на мысль, что дыхательная система напрямую не лимитирует аэробную работоспособность. Это предположение подтверждается тем, что даже у тренированных людей максимальная легочная вентиляция, зарегистрированная во время предельно интенсивных аэробных нагрузок, составляет лишь 70-90% от максимальной произвольной легочной вентиляции в покое. Эту точку зрения подтвердили результаты экспериментов с облегчением работы внешнего дыхания (на 20-40%) во время нагрузки с постоянной мощностью (70-80% от максимального потребления кислорода — МПК). Сходные результаты были получены при использовании кислородно-гелиевых смесей при субмаксимальной аэробной работе. Увеличение мертвого пространства у тренированных людей также не привело к снижению максимального потребления кислорода, поскольку величина альвеолярной вентиляции осталась на прежнем уровне за счет увеличения легочной вентиляции.

В последнее время появились работы, вскрывающие более сложные взаимоотношения мышечной и дыхательной систем во время физической нагрузки. Эти исследования посвящены изучению явления артериальной гипоксемии и рефлекторным взаимоотношениям между дыхательной и мышечной системами.

Артериальная гипоксемия. Артериальная гипоксемия при нагрузке — довольно частое явление при различных патологиях дыхательной системы. У здоровых нетренированных людей артериальная гипоксемия практически не встречается. У людей, тренирующих аэробную работоспособность, артериальная гипоксемия встречается достаточно редко, однако у высокотренированных спортсменов встречаемость этого явления может достигать 50%.

Сатурация кислородом крови определяется как с помощью пульсоксиметрии, так и прямым методом, как правило, в плечевой артерии. Так, при различных по продолжительности максимальных нагрузках (2-10 мин) различные авторы регистрировали снижение сатурации вплоть до 80-90%, что приводило к снижению общего количества кислорода, доставляемого к тканям. Роль артериальной гипоксемии как лимитирующего фактора показана в экспериментах с дыханием нормоксической и гипероксической газовой смесью во время максимального теста с непрерывно повышающейся нагрузкой.

Как говорилось выше, снижение сатурации крови кислородом является следствием неадекватного отношения альвеолярная вентиляция/перфузия. Астма и астмоподобные состояния, часто встречающиеся у спортсменов, тренирующихся при низких температурах, могут быть причиной снижения альвеолярной вентиляции. Однако артериальная гипоксемия встречается и у спортсменов с нормальной респираторной системой.

Как отмечалось выше, возможно несколько гипотетических причин возникновения артериальной гипоксемии. У тренированных людей это явление связывают, прежде всего, с малым временем пребывания эритроцита в зоне газообмена. Время пребывания эритроцита в зоне газообмена зависит от суммарного сечения сосудов капиллярного русла малого круга и от сердечного выброса. Показатель сердечного выброса у высокотренированных спортсменов может достигать 40 л/мин. Это может быть основной причиной увеличения скорости кровотока и, как следствие, снижения времени пребывания эритроцита в зоне газообмена.

Рефлекторные взаимоотношения между дыхательной и сердечно-сосудистой системой. В экспериментах с моделированием рабочего дыхательного паттерна в покое было показано, что потребление кислорода дыхательными мышцами во время максимальной работы составляет 10% от МПК всем организмом. У тренированных атлетов потребление кислорода дыхательными мышцами достигает 15% от общего потребления кислорода. Сходные данные были получены при изучении распределения кровотока при максимальной нагрузке: на долю дыхательных мышц приходилось около 14—16% от общего кровотока. Логично предположить, что конкурентные взаимоотношения при доставке кислорода могут возникнуть между дыхательными и рабочими скелетными мышцами только при работе максимальной или супра-максимальной аэробной мощности. Действительно, снижение сопротивления на вдохе при субмаксимальной аэробной нагрузке (50% и 75% от МПК) не влияет на время работы до отказа. В то же время при мощности работы 90-100% от МПК уменьшение сопротивления на вдохе приводит к увеличению предельного времени работы у тренированных велосипедистов. Увеличение сопротивления на вдохе, напротив, снижает предельное время работы. Полученный результат связан, прежде всего, с перераспределением кровотока, возникающим во время максимальной легочной вентиляции.

В велоэргометрическом тесте с возрастающей нагрузкой до отказа у квалифицированных велосипедистов во время максимальной нагрузки (90-100% от МПК) продемонстрировано снижение кровотока в ногах за счет повышения периферического сопротивления. Повышение периферического сопротивления (снижение кровотока) в рабочих мышцах ног во время максимальной аэробной нагрузки связывают с перераспределением сердечного выброса (СВ) за счет метаборефлекса, возникающего при накоплении метаболитов в диафрагме и других дыхательных мышцах при их утомлении. Механизм действия метаборефлекса представляется следующим: метаболиты (предположительно ионы водорода и лактат) раздражают свободные нервные окончания (афференты III и IV), расположенные в мышечном интерстиции. Это ведет к дополнительной активации симпатического отдела вегетативной нервной системы и увеличению симпатической нервной активности, адресованной сосудам мышц, что и приводит к прекращению дилатации и даже к констрикции сосудов рабочих мышц. Гипотеза получила подтверждение в экспериментах с имитацией рабочего паттерна дыхания в покое с одновременной регистрацией симпатической нервной активности в п. peroneus.

Прямое подтверждение работы метаборефлекса получено в исследованиях на собаках в условиях покоя и при работе. Введение в диафрагму молочной кислоты (через a. pherenica) приводит к увеличению периферического сопротивления сосудов задней конечности за счет увеличения симпатической посылки.

Исходя из результатов экспериментальных работ, можно заключить, что респираторная система в некоторых случаях может косвенным образом ограничивать доставку кислорода к рабочим мышцам во время максимальной или супрамаксимальной аэробной работы, как за счет развития артериальной гипоксемии, так и за счет рефлекторного перераспределения кровотока между дыхательными и рабочими мышцами.

Регуляция дыхания при физической нагрузке[править | править код]

Во время физической нагрузки извлечение О2 из крови увеличивается втрое, что сопровождается 30-кратным или даже большим увеличением кровотока. Таким образом, во время физической нагрузки скорость метаболизма в мышцах может повыситься в целых 100 раз.

Повышение альвеолярно-капиллярного градиента РО2, кровоток и удаление СО2[править | править код]

Во время физической нагрузки увеличивается количество О2, поступающего в кровь в легких. РО2 крови, попадающей в легочные капилляры, падает с 5,3 до 3,3 кПа (с 40 до 25 мм рт. ст.) или меньше, вследствие чего альвеолярно-капиллярный градиент РО2 увеличивается, и больше О2 попадает в кровь. Минутный объем кровотока также увеличивается с 5,5 л/мин до 20~35 л/мин. Поэтому общее количество О2, поступающего в кровь, увеличивается с 250 мл/мин в состоянии покое до значений, достигающих 4000 мл/мин. Увеличивается также количество СО2, удаленного из каждой единицы крови.

Рост потребления О2 пропорционален нагрузке вплоть до максимального уровня. При увеличении нагрузки наступает момент, когда в крови начинает повышаться уровень молочной кислоты (лактатный порог). Когда аэробный ресинтез запасов энергии не поспевает за их использованием, образование молочной кислоты в мышцах возрастает, и возникает кислородная задолженность. На практике анаэробный порог достигается, когда уровень молочной кислоты в крови превышает 4 ммоль/л. Анаэробный порог можно изучать по изменению параметров дыхания и с помощью электромиографического исследования, при этом нет необходимости брать образцы крови для анализа, причиняющие некоторую боль.

Изменения дыхательного коэффициента (ДК) во время физической нагрузки[править | править код]

Дыхательный коэффициент (ДК) представляет собой отношение объема произведенного СО2к объему О2, потребленного в единицу времени. В состоянии покоя он может составлять, например, 0,8. Когда преобладает метаболизм глюкозы, он равен 1. У людей, находящихся в плохой физической форме, метаболизм глюкозы преобладает над метаболизмом жиров уже при низком уровне нагрузки. У тренированных, выносливых спортсменов способность использовать жирные кислоты для производства энергии сохраняется и при высоком уровне нагрузки. Во время физической нагрузки ДК повышается; его значение, возможно, даже достигает 1,5—2,0 из-за дополнительного СО2, образовавшегося при буферизации молочной кислоты во время активной физической нагрузки. Во время компенсации кислородной задолженности после физической нагрузки ДК падает до 0,5 или ниже.

Контроль вентиляции во время физической нагрузки[править | править код]

Вентиляция легких увеличивается с началом физической нагрузки, но не сразу достигает необходимого в данный момент уровня, процесс происходит постепенно. Неотложная потребность в энергии восполняется богатыми энергией фосфатами, а затем их ресинтезом с использованием кислорода, который содержится в тканевой жидкости или накоплен в переносящих кислород белках (рис. 5).

В начале физической нагрузки происходит резкое увеличение вентиляции, а в конце ее — столь же резкое уменьшение. Это наводит на мысль об условном или приобретенном рефлексе. Во время физической нагрузки можно ожидать заметного уменьшения давления кислорода в артериальной крови и повышения давления СО2 в венозной крови из-за возросшего метаболизма скелетных мышц. Однако оба они остаются почти в норме, демонстрируя чрезвычайно высокую способность дыхательной системы обеспечивать адекватную оксигенацию крови, даже при тяжелой нагрузке. Поэтому газам крови не нужно отклоняться от нормы, чтобы физическая нагрузка простимулировала дыхание.

Так как РСО2 в артериальной крови не меняется во время умеренной физической нагрузки, накопления избытка Н+ в результате из накопления СО2 не наблюдается. Но во время напряженной физической нагрузки наблюдается увеличение концентрации Н+ в артериальной крови вследствие образования и поступления молочной кислоты из мышц в кровь. Это изменение концентрации Н+, возможно, отчасти является причиной гипервентиляции во время серьезной физической нагрузки.

Дыхание во время физической нагрузки, скорее всего, стимулируется в основном нейрогенными механизмами. Часть этой стимуляции является результатом непосредственного возбуждения дыхательного центра ответвлениями аксонов, спускающихся из мозга к мотонейронам, обслуживающим сокращающиеся мышцы. Считается, что существенную роль в стимуляции дыхания во время физической нагрузки играют также афферентные пути от рецепторов в суставах и мышцах.

Кроме того, в результате повышенной физической активности часто возрастает температура тела, что способствует стимуляции альвеолярной вентиляции. Возможно, стимуляции вентиляции во время физической нагрузки способствует увеличение концентрации адреналина и норадреналина в плазме крови.

Фактор, ограничивающий способность переносить физическую нагрузку[править | править код]

При максимальной физической нагрузке фактическая вентиляция легких составляет всего 50% от максимального дыхательного объема. Кроме того, насыщение гемоглобина артериальной крови кислородом происходит даже во время самой тяжелой физической нагрузки. Поэтому дыхательная система не может быть фактором, ограничивающим способность здорового человека переносить физическую нагрузку. Однако для людей в плохой физической форме натренированность дыхательных мышц может стать проблемой. Фактором, ограничивающим способность переносить физическую нагрузку, является способность сердца накачивать кровь к мышцам, которая, в свою очередь, влияет на максимальную скорость переноса О2 Функциональное состояние сердечно-сосудистой системы является распространенной проблемой. Митохондрии в сокращающейся мышце — это конечные потребители кислорода и важнейший определяющий фактор выносливости.

Источник: sportwiki.to


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.